Nonlinear double porosity models with non-standard growth

被引:1
作者
Choquet, Catherine [1 ,2 ]
Pankratov, Leonid [3 ]
机构
[1] Univ P Cezanne, LATP UMR 6632, F-13397 Marseille 20, France
[2] Univ Savoie, Delegat CNRS LAMA UMR 5127, FST, F-13397 Marseille 20, France
[3] Inst Low Temp Phys, Div Math, UA-310164 Kharkov, Ukraine
来源
COMPTES RENDUS MECANIQUE | 2009年 / 337卷 / 9-10期
关键词
Fluid mechanics; Homogenization; Double porosity; Non-standard growth; ELLIPTIC-EQUATIONS; HOMOGENIZATION; REGULARITY;
D O I
10.1016/j.crme.2009.09.004
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the solutions to quasilinear elliptic equations with high contrast coefficients. The energy formulation leads to work with variable exponent Lebesgue spaces L-P epsilon(.) in domains with a complex microstructure scaled by a small parameter epsilon. We derive rigorously the corresponding homogenized problem. It is completely described in terms of local energy characteristics of the original domain. To cite this article: C. Choquet, L. Pankratov, C R. Mecanique 337 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:659 / 666
页数:8
相关论文
共 14 条
[1]   AN EXTENSION THEOREM FROM CONNECTED SETS, AND HOMOGENIZATION IN GENERAL PERIODIC DOMAINS [J].
ACERBI, E ;
PIAT, VC ;
DALMASO, G ;
PERCIVALE, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (05) :481-496
[2]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[3]   Homogenization of a class of quasilinear elliptic equations in high-contrast fissured media [J].
Amaziane, B. ;
Pankratov, L. ;
Piatnitski, A. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 :1131-1155
[4]  
Antontsev S, 2006, HBK DIFF EQUAT STATI, V3, P1, DOI 10.1016/S1874-5733(06)80005-7
[5]   DERIVATION OF THE DOUBLE POROSITY MODEL OF SINGLE-PHASE FLOW VIA HOMOGENIZATION THEORY [J].
ARBOGAST, T ;
DOUGLAS, J ;
HORNUNG, U .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (04) :823-836
[6]  
Barenblatt G. I., 1960, Journal of Applied Mathematics and Mechanics, V24, P1286, DOI DOI 10.1016/0021-8928(60)90107-6
[7]  
Bourgeat A, 2003, ASYMPTOTIC ANAL, V34, P311
[8]   A general double porosity model [J].
Bourgeat, A ;
Goncharenko, M ;
Panfilov, M ;
Pankratov, L .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1999, 327 (12) :1245-1250
[9]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[10]  
Choquet C., 2004, Appl. Anal., V83, P477, DOI DOI 10.1080/00036810310001643194