Unbounded one-dimensional global attractor for the damped sine-Gordon equation

被引:8
作者
Qian, M [1 ]
Qin, WX [1 ]
Wang, GX [1 ]
Zhu, S [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
sine-Gordon equation; global attractor;
D O I
10.1007/s003329910018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dynamical behavior of the damped sine-Gordon equation with homogeneous Neumann boundary condition is studied. It is shown that the equation has an unbounded one-dimensional global attractor in a suitable functional space when the "damping" and the "diffusing" are not very small.
引用
收藏
页码:417 / 432
页数:16
相关论文
共 16 条
[1]  
[Anonymous], 1988, APPL MATH SCI
[2]  
Chepyzhov V., 1992, ADV SOV MATH, V10, P85, DOI DOI 10.1090/ADVSOV/010/02
[3]   INVARIANT-MANIFOLDS FOR FLOWS IN BANACH-SPACES [J].
CHOW, SN ;
LU, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 74 (02) :285-317
[4]  
Hale J. K., 1988, ASYMPTOTIC BEHAV DIS
[6]  
LEVI M, 1978, Q APPL MATH, V7, P167
[7]  
Mallet-Paret J., 1988, J AM MATH SOC, V1, P805, DOI 10.1090/S0894-0347-1988-0943276-7
[8]  
MORA X, 1989, RAIRO-MATH MODEL NUM, V23, P489
[9]  
Pazy A., 1983, APPL MATH SCI, V44
[10]   DYNAMIC BEHAVIOR IN COUPLED SYSTEMS OF J-J TYPE [J].
QIAN, M ;
SHEN, WX ;
ZHANG, JY .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 88 (01) :175-212