On the eccentric distance sum of trees and unicyclic graphs

被引:75
|
作者
Yu, Guihai [1 ]
Feng, Lihua [2 ]
Ilic, Aleksandar [3 ]
机构
[1] Shandong Inst Business & Technol, Sch Math, Yantai 264005, Shandong, Peoples R China
[2] Cent S Univ, Dept Math, Changsha 410075, Hunan, Peoples R China
[3] Univ Nis, Fac Sci & Math, Nish 18000, Serbia
基金
中国博士后科学基金;
关键词
Eccentricity; Eccentric distance sum; Unicyclic graph; Tree; Diameter; ANTI-HIV ACTIVITY; CONNECTIVITY INDEX;
D O I
10.1016/j.jmaa.2010.08.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected graph with the vertex set V(G). The eccentric distance sum of G is defined as xi(d)(G) = Sigma(v is an element of V(G))epsilon(v)D-G(v), where epsilon(v) is the eccentricity of the vertex v and D-G(v) = Sigma(u is an element of V(G))d(u, v) is the sum of all distances from the vertex v. In this paper we characterize the extremal unicyclic graphs among n-vertex unicyclic graphs with given girth having the minimal and second minimal eccentric distance sum. In addition, we characterize the extremal trees with given diameter and minimal eccentric distance sum. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:99 / 107
页数:9
相关论文
共 50 条
  • [21] On the extremal values of the eccentric distance sum of trees with a given domination number
    Miao, Lianying
    Pang, Shiyou
    Liu, Fang
    Wang, Eryan
    Guo, Xiaoqing
    DISCRETE APPLIED MATHEMATICS, 2017, 229 : 113 - 120
  • [23] Further results on the eccentric distance sum
    Hua, Hongbo
    Zhang, Shenggui
    Xu, Kexiang
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (1-2) : 170 - 180
  • [24] ON THE LAPLACIAN SPREAD OF TREES AND UNICYCLIC GRAPHS
    Liu, Muhuo
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2010, 34 : 151 - 159
  • [25] On the minimum eccentric distance sum of bipartite graphs with some given parameters
    Li, S. C.
    Wu, Y. Y.
    Sun, L. L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (02) : 1149 - 1162
  • [26] The Sanskruti index of trees and unicyclic graphs
    Deng, Fei
    Jiang, Huiqin
    Liu, Jia-Bao
    Poklukar, Darja Rupnik
    Shao, Zehui
    Wu, Pu
    Zerovnik, Janez
    OPEN CHEMISTRY, 2019, 17 (01): : 448 - 455
  • [27] On the Eccentric Connectivity Index of Unicyclic Graphs
    Nacaroglu, Yasar
    Maden, Ayse Dilek
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2018, 9 (01): : 47 - 56
  • [28] On Randic Indices of Trees, Unicyclic Graphs, and Bicyclic Graphs
    Du, Zhibin
    Zhou, Bo
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2011, 111 (12) : 2760 - 2770
  • [29] The Randic Indices of Trees, Unicyclic Graphs and Bicyclic Graphs
    Li, Jianxi
    Balachandran, S.
    Ayyaswamy, S. K.
    Venkatakrishnan, Y. B.
    ARS COMBINATORIA, 2016, 127 : 409 - 419
  • [30] On the extremal graphs of diameter 2 with respect to the eccentric resistance-distance sum
    He, Chunling
    Li, Shuchao
    Wang, Mengtian
    DISCRETE APPLIED MATHEMATICS, 2017, 221 : 71 - 81