On the modified Korteweg de Vries equation

被引:0
作者
Hayashi, N [1 ]
Naumkin, P [1 ]
机构
[1] Sci Univ Tokyo, Dept Appl Math, Tokyo 1628601, Japan
来源
INTERNATIONAL SEMINAR DAY ON DIFFRACTION, PROCEEDINGS | 1999年
关键词
D O I
10.1109/DD.1999.816195
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the large time asymptotic behavior of solutions to the Cauchy problem for the modified Korteweg - de Vries equation u(t) + a(t) (u(3))(x) + 1/3u(xxx) = 0. (t, x) epsilon R x R, with initial data u(0, x)= u(0)(x), x epsilon R. We assume that the coefficient a(t) epsilon C-1 (R) is real, bounded and slowly varying function, such that \a'(t)\ less than or equal to C(1 + \t\)(-7/6). We suppose that the initial data are real - valued and small enough, belonging to the weighted Sobolev space. We Drove the time decay estimates of the solutions. We also find the asymptotics for large time of the solution in the neighborhood of the self-similar solution.
引用
收藏
页码:146 / 156
页数:11
相关论文
共 30 条
[1]  
Ablowitz MJ, 1981, SOC IND APPL MATH
[2]  
[Anonymous], 1972, PUBL RES I MATH SCI
[3]  
[Anonymous], 1984, MATH USSR SBORNIK
[4]   DISPERSIVE BLOWUP OF SOLUTIONS OF GENERALIZED KORTEWEG-DEVRIES EQUATIONS [J].
BONA, JL ;
SAUT, JC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 103 (01) :3-57
[5]   DISPERSION OF SMALL AMPLITUDE SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION [J].
CHRIST, FM ;
WEINSTEIN, MI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :87-109
[6]  
Constantin P., 1988, J AM MATH SOC, V1, P413
[7]  
CRAIG W, 1992, ANN I H POINCARE-AN, V9, P147
[8]  
DEBOUARD A, 1995, ANN I H POINCARE-AN, V12, P673
[9]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS - ASYMPTOTICS FOR THE MKDV EQUATION [J].
DEIFT, P ;
ZHOU, X .
ANNALS OF MATHEMATICS, 1993, 137 (02) :295-368
[10]  
Dix D.B., 1997, LECT NOTES MATH, V1668