Differential superordination for harmonic complex-valued functions

被引:4
作者
Oros, Georgia Irina [1 ]
Oros, Gheorghe [1 ]
机构
[1] Univ Oradea, Dept Math, Str Univ 1, Oradea 410087, Romania
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2019年 / 64卷 / 04期
关键词
Differential subordination; harmonic functions; differential superordination; subordinant; best subordinant; analytic function;
D O I
10.24193/subbmath.2019.4.04
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega and Delta be any sets in C, and let phi(r, s, t, z) : C-3 x U -> C. Let p be a complex-valued harmonic function in the unit disc U of the form p(z) = p(1)(z) + <(p(2)(z))over bar>, where p(1) and p(2) are analytic in U. In [5] the authors have determined properties of the function p such that p satisfies the differential subordination phi(p(z), Dp(z), D(2)p(z), z) subset of Omega double right arrow p(U) subset of Delta. In this article, we consider the dual problem of determining properties of the function p, such that p satisfies the second-order differential superordination Omega subset of phi(p(z), Dp(z), D(2)p(z); z) double right arrow Delta subset of p(U).
引用
收藏
页码:487 / 496
页数:10
相关论文
共 14 条
[1]  
Bulboaca T, 2005, Differential subordinations and superordinations, Recent Results
[2]  
CLUNIE J, 1984, ANN ACAD SCI FENN-M, V9, P3
[3]  
Duren Peter, 2004, Harmonic Mappings in the Plane, V156
[4]  
Kanas S, 2015, ARXIV150903751V1MATH
[5]  
Lewy H., 1936, B AM MATH SOC, V42, P689
[6]  
Miller S. S., 2003, Complex Variables, Theory and Application: An International Journal, V48, P815, DOI [10.1080/02781070310001599322, DOI 10.1080/02781070310001599322]
[7]  
Miller S. S., 2000, Monographs and Textbooks in Pure and Applied Mathematics, V225
[8]   2ND ORDER DIFFERENTIAL INEQUALITIES IN COMPLEX PLANE [J].
MILLER, SS ;
MOCANU, PT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 65 (02) :289-305
[9]  
MILLER SS, 1981, MICH MATH J, V28, P157
[10]  
Mocanu P.T., 1999, GEOMETRIC FUNCTION T