Accelerated Primal-Dual Algorithm for Distributed Non-convex Optimization

被引:0
作者
Zhang, Shengjun [1 ]
Bailey, Colleen P. [1 ]
机构
[1] Univ North Texas, OSCAR, Dept Elect Engn, Denton, TX 76203 USA
来源
2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021) | 2021年
关键词
distributed optimization; primal-dual technique; accelerated algorithms; stochastic gradient descent;
D O I
10.1109/SSCI50451.2021.9660023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates accelerating the convergence of distributed optimization algorithms on non-convex problems. We propose a distributed stochastic gradient primal-dual with fixed parameters and "powerball" (DSGPA-F-PB) method to accelerate. We show that the proposed algorithm achieves the linear speedup convergence rate O(1/root nT) for general smooth (possibly non-convex) cost functions. We demonstrate the efficiency of the algorithm through numerical experiments by training two-layer fully connected neural networks and convolutional neural networks on the MNIST dataset to compare with state-of-the-art distributed stochastic gradient descent (SGD) algorithms and centralized SGD algorithms.
引用
收藏
页数:8
相关论文
共 47 条
[1]  
[Anonymous], 2011, ADV NEURAL INFORM PR
[2]  
[Anonymous], 2020, arXiv preprint arxiv
[3]  
Assran M, 2019, PR MACH LEARN RES, V97
[4]  
Basu D, 2019, ADV NEUR IN, V32
[5]  
Bernstein J, 2018, PR MACH LEARN RES, V80
[6]  
Bottou Leon, 2012, Neural Networks: Tricks of the Trade. Second Edition: LNCS 7700, P421, DOI 10.1007/978-3-642-35289-8_25
[7]  
Choromanska A, 2015, JMLR WORKSH CONF PRO, V38, P192
[8]  
De Sa Christopher M, 2015, Advances in neural information processing systems, V28
[9]  
Dean Jeffrey, 2012, P 26 INT C NEURAL IN, P1223
[10]  
Fallah A., 2019, ARXIV PREPRINT ARXIV