Boundary output feedback stabilization for spacial multi-dimensional coupled fractional reaction-diffusion systems

被引:5
作者
Cai, Rui-Yang [1 ]
Zhou, Hua-Cheng [2 ]
Fan, Xue-Ru [3 ]
Kou, Chun-Hai [4 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[2] Cent South Univ, Sch Math & Stat, Changsha 410075, Peoples R China
[3] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China
[4] Donghua Univ, Dept Appl Math, Shanghai 201620, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
backstepping method; Mittag-Leffler stabilization; multi-dimensional coupled reaction-diffusion systems; output feedback; DISTURBANCE REJECTION; OBSERVER; EQUATION;
D O I
10.1002/asjc.2636
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the boundary feedback stabilization for spacial multi-dimensional coupled fractional reaction-diffusion systems with non-collocated or collocated outputs in the case that the system state is unmeasurable. By employing the backstepping method, we introduce a target system and analyze its Mittag-Leffler stability. For each pair of sides of the region boundary, assuming that system state is hinged on one side, while the controller is designed on the opposite side. These boundary controllers work together to achieve the state feedback Mittag-Leffler stabilization of the considered system. In addition, for both kinds of outputs, feedback controllers are also established to achieve the asymptotical stability of the corresponding closed-loop system. Two numerical experiments are carried out to illustrate our results.
引用
收藏
页码:2751 / 2760
页数:10
相关论文
共 27 条
[1]   Lyapunov functions for fractional order systems [J].
Aguila-Camacho, Norelys ;
Duarte-Mermoud, Manuel A. ;
Gallegos, Javier A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :2951-2957
[3]   Boundary control of coupled reaction-diffusion processes with constant parameters [J].
Baccoli, Antonello ;
Pisano, Alessandro ;
Orlov, Yury .
AUTOMATICA, 2015, 54 :80-90
[4]  
Bajlekova E., 1998, APPL ANAL, V1, P255
[5]   Active disturbance rejection control for fractional reaction-diffusion equations with spatially varying diffusivity and time delay [J].
Cai, Rui-Yang ;
Zhou, Hua-Cheng ;
Kou, Chun-Hai .
SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (02)
[6]   Stabilization and Stability Robustness of Coupled Non-Constant Parameter Time Fractional PDEs [J].
Chen, Juan ;
Tepljakov, Aleksei ;
Petlenkov, Eduard ;
Chen, Yangquan ;
Zhuang, Bo .
IEEE ACCESS, 2019, 7 :163969-163980
[7]   Observer-based output feedback control for a boundary controlled fractional reaction diffusion system with spatially-varying diffusivity [J].
Chen, Juan ;
Cui, Baotong ;
Chen, Yang Quan .
IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (11) :1561-1572
[8]   Diffusion control for a tempered anomalous diffusion system using fractional-order PI controllers [J].
Chen, Juan ;
Zhuang, Bo ;
Chen, YangQuan ;
Cui, Baotong .
ISA TRANSACTIONS, 2018, 82 :94-106
[9]   Mittag-Leffler convergent backstepping observers for coupled semilinear subdiffusion systems with spatially varying parameters [J].
Ge, Fudong ;
Meurer, Thomas ;
Chen, YangQuan .
SYSTEMS & CONTROL LETTERS, 2018, 122 :86-92
[10]   Extended Luenberger-type observer for a class of semilinear time fractional diffusion systems [J].
Ge, Fudong ;
Chen, YangQuan .
CHAOS SOLITONS & FRACTALS, 2017, 102 :229-235