Irreducible p-Brauer characters of p-power degree for the symmetric and alternating groups

被引:3
作者
Bessenrodt, Christine [1 ]
机构
[1] Leibniz Univ Hannover, Fak Math & Phys, D-30167 Hannover, Germany
关键词
symmetric groups; alternating groups; irreducible Brauer characters; irreducible p-modular representations; p-power degree;
D O I
10.1007/s00013-006-2088-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting from the question when all irreducible p-Brauer characters for a symmetric or an alternating group are of p-power degree, we classify the p-modular irreducible representations of p-power dimension in some families of representations for these groups. In particular, this then allows to confirm a conjecture by W. Willems for the alternating groups.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 15 条
[1]   Prime power degree representations of the symmetric and alternating groups [J].
Balog, A ;
Bessenrodt, C ;
Olsson, JB ;
Ono, K .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 :344-356
[2]  
BENSON D, 1988, J LOND MATH SOC, V38, P250
[3]   On residue symbols and the Mullineux conjecture [J].
Bessenrodt, C ;
Olsson, JB .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1998, 7 (03) :227-251
[4]   A proof of the Mullineux conjecture [J].
Ford, B ;
Kleshchev, AS .
MATHEMATISCHE ZEITSCHRIFT, 1997, 226 (02) :267-308
[5]   Irreducible representations of the alternating group in odd characteristic [J].
Ford, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (02) :375-380
[6]  
James G., 1981, ENCY MATH ITS APPL, V16
[7]  
JAMES GD, 1978, SPRINGER LMN, V682
[8]   Representations of the alternating group which are irreducible over subgroups [J].
Kleshchev, AS ;
Sheth, J .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 84 :194-212
[9]  
KLESHCHEV AS, 1995, J REINE ANGEW MATH, V459, P163
[10]   Branching rules for modular representations of symmetric groups .3. Some corollaries and a problem of Mullineux [J].
Kleshchev, AS .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 :25-38