Separate Human Activity Recognition Model Based on Recognition-Weighted kNN Algorithm

被引:0
作者
Tan, Haiqing [1 ]
Zhang, Lei [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing, Peoples R China
来源
ADVANCED MULTIMEDIA AND UBIQUITOUS ENGINEERING, MUE/FUTURETECH 2018 | 2019年 / 518卷
关键词
Human activity recognition; Transfer learning; Wearable sensor; kNN;
D O I
10.1007/978-981-13-1328-8_74
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Human activity recognition technology based on Transfer Learning is designed to solve the problem of lacking labeled training samples. In the traditional recognition model, the new sensor devices need a lot of labeled data to train its recognition model. The collection of these labeled data requires a lot of time and money. In this paper, we build a separate transfer recognition network model, which enables new sensor nodes to train with original sensor nodes without the need of re-collecting sample data. We notice that the state-of-the-art label-based transfer algorithm didn't take into account the accuracy of label recognition. Therefore, we propose a Recognition-weighted kNN algorithm, and compare it with label transfer algorithm, and achieved good results.
引用
收藏
页码:573 / 581
页数:9
相关论文
共 13 条
[1]   Robotic Ubiquitous Cognitive Ecology for Smart Homes [J].
Amato, G. ;
Bacciu, D. ;
Broxvall, M. ;
Chessa, S. ;
Coleman, S. ;
Di Rocco, M. ;
Dragone, M. ;
Gallicchio, C. ;
Gennaro, C. ;
Lozano, H. ;
McGinnity, T. M. ;
Micheli, A. ;
Ray, A. K. ;
Renteria, A. ;
Saffiotti, A. ;
Swords, D. ;
Vairo, C. ;
Vance, P. .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2015, 80 :S57-S81
[2]   Recognizing Daily and Sports Activities in Two Open Source Machine Learning Environments Using Body-Worn Sensor Units [J].
Barshan, Billur ;
Yuksek, Murat Cihan .
COMPUTER JOURNAL, 2014, 57 (11) :1649-1667
[3]  
Bin Wang, 2013, 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC 2013), P449, DOI 10.1109/IHMSC.2013.254
[4]  
Calatroni A, 2009, LECT NOTES COMPUT SC, V5741, P121, DOI 10.1007/978-3-642-04471-7_10
[5]   Transfer learning for activity recognition: a survey [J].
Cook, Diane ;
Feuz, Kyle D. ;
Krishnan, Narayanan C. .
KNOWLEDGE AND INFORMATION SYSTEMS, 2013, 36 (03) :537-556
[6]  
Fallahzadeh R, 2016, IEEE ENG MED BIO, P6010, DOI 10.1109/EMBC.2016.7592098
[7]  
Kurz M, 2011, INT C ADAPTIVE SELF, P836
[8]   Dynamic sensor data segmentation for real-time knowledge-driven activity recognition [J].
Okeyo, George ;
Chen, Liming ;
Wang, Hui ;
Sterritt, Roy .
PERVASIVE AND MOBILE COMPUTING, 2014, 10 :155-172
[9]  
Roggen D., 2010, 2010 Seventh International Conference on Networked Sensing Systems (INSS 2010), P233, DOI 10.1109/INSS.2010.5573462
[10]   The adARC pattern analysis architecture for adaptive human activity recognition systems [J].
Roggen, Daniel ;
Foerster, Kilian ;
Calatroni, Alberto ;
Troester, Gerhard .
JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2013, 4 (02) :169-186