The performance of an upper bound on the fractional chromatic number of weighted graphs

被引:8
作者
Ganesan, Ashwin [1 ]
机构
[1] KJ Somaiya Coll Engn, Dept Informat Technol, Bombay 77, Maharashtra, India
关键词
Fractional chromatic number; Upper bound; Weighted graph; Greedy coloring algorithm; Worst-case performance; Distributed systems;
D O I
10.1016/j.aml.2010.02.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a weighted graph G(x), where (x(upsilon) : upsilon is an element of V) is a non-negative, real-valued weight assigned to the vertices of G, let B(G) be an upper bound on the fractional chromatic number of the weighted graph G(x); so chi(f)(G(x)) <= B(G(x)). We consider a particular upper bound B resulting from a generalization of the greedy coloring algorithm to weighted graphs. To investigate the worst-case performance of this upper bound, we study the graph invariant
引用
收藏
页码:597 / 599
页数:3
相关论文
共 9 条
[1]  
[Anonymous], GRADUATE TEXTS MATH
[2]  
GANESAN A, 2009, P WORKSH APPL GRAPH
[3]  
Ganesan Ashwin, 2008, Technical Report
[4]  
Gerke S, 2001, J COMB THEORY B, V83, P58, DOI 10.1006/jctb.2001.2042
[5]   THE ELLIPSOID METHOD AND ITS CONSEQUENCES IN COMBINATORIAL OPTIMIZATION [J].
GROTSCHEL, M ;
LOVASZ, L ;
SCHRIJVER, A .
COMBINATORICA, 1981, 1 (02) :169-197
[6]   LINK SCHEDULING IN POLYNOMIAL-TIME [J].
HAJEK, B ;
SASAKI, G .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (05) :910-917
[7]  
Hajek B., 1984, P C INF SCI SYST MAR
[8]  
Hamdaoui Bechir, 2005, ACM SIGMOBILE Mobile Computing and Communications Review, V9, P15, DOI DOI 10.1145/1096166.1096170
[9]  
Scheinerman E., 1992, FRACTIONAL GRAPH THE