Biogenesis and intranuclear trafficking of human box C/D and H/ACA RNPs

被引:139
作者
Kiss, T. [1 ]
Fayet, E.
Jady, B. E.
Richard, P.
Weber, M.
机构
[1] CNRS, UMR5099, IFR109, Lab Biol Mol Eucaryote, F-31062 Toulouse, France
[2] Hungarian Acad Sci, Biol Res Ctr, H-6701 Szeged, Hungary
关键词
D O I
10.1101/sqb.2006.71.025
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Box C/D and H/ACA snoRNAs represent two abundant groups of small noncoding RNAs. The majority of box C/D and H/ACA snoRNAs function as guide RNAs in the site-specific 2'-O-methylation and pseudouridylation of rRNAs, respectively. The box C/D snoRNAs associate with fibrillarin, Nop56, Nop58, and 15.5K/NHPX proteins to form functional snoRNP particles, whereas all box H/ACA snoRNAs form complexes with the dyskerin, Nop10, Nhp2, and Gar1 snoRNP proteins. Recent studies demonstrate that the biogenesis of mammalian snoRNPs is a complex process that requires numerous trans-acting factors. Most vertebrate snoRNAs are posttranscriptionally processed from pre-mRNA introns, and the early steps of snoRNP assembly are physically and functionally coupled with the synthesis or splicing of the host pre-mRNA. The maturing. snoRNPs follow a complicated intranuclear trafficking process that is directed by transport factors also involved in nucleocytoplasmic RNA transport. The human telomerase RNA (hTR) carries a box H/ACA RNA domain that shares a common Cajal-body-specific localization element with a subclass of box H/ACA RNAs, which direct pseudouridylation of spliceosomal snRNAs in the Cajal body. However, besides concentrating in Cajal bodies, hTR also accumulates at a small, structurally distinct subset of telomeres during S phase. This suggests that a cell-cycle-dependent, dynamic localization of hTR to telomeres may play ail important regulatory role in human telomere synthesis.
引用
收藏
页码:407 / 417
页数:11
相关论文
共 131 条
[1]   A doughnut-shaped heteromer of human Sm-like proteins binds to the 3′-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro [J].
Achsel, T ;
Brahms, H ;
Kastner, B ;
Bachi, A ;
Wilm, M ;
Lührmann, R .
EMBO JOURNAL, 1999, 18 (20) :5789-5802
[2]   Functions of the exosome in rRNA, snoRNA and snRNA synthesis [J].
Allmang, C ;
Kufel, J ;
Chanfreau, G ;
Mitchell, P ;
Petfalski, E ;
Tollervey, D .
EMBO JOURNAL, 1999, 18 (19) :5399-5410
[3]   Analysis of the structure of human telomerase RNA in vivo [J].
Antal, M ;
Boros, É ;
Solymosy, F ;
Kiss, T .
NUCLEIC ACIDS RESEARCH, 2002, 30 (04) :912-920
[4]   The expanding snoRNA world [J].
Bachellerie, JP ;
Cavaillé, J ;
Hüttenhofer, A .
BIOCHIMIE, 2002, 84 (08) :775-790
[5]   The RNA world of the nucleolus: Two major families of small RNAs defined by different box elements with related functions [J].
Balakin, AG ;
Smith, L ;
Fournier, MJ .
CELL, 1996, 86 (05) :823-834
[6]   The cotranscriptional assembly of snoRNPs controls the biosynthesis of H/ACA snoRNAs in Saccharomyces cerevisiae [J].
Ballarino, M ;
Morlando, M ;
Pagano, F ;
Fatica, A ;
Bozzoni, I .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (13) :5396-5403
[7]   Lsm proteins and RNA processing [J].
Beggs, JD .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2005, 33 :433-438
[8]  
Bertrand E, 2004, MOL BIOL INTELL UNIT, P223
[9]  
Bohmann K, 1995, J CELL SCI, P107
[10]   PHAX and CRM1 are required sequentially to transport U3 snoRNA to nucleoli [J].
Boulon, S ;
Verheggen, C ;
Jady, BE ;
Girard, C ;
Pescia, C ;
Paul, C ;
Ospina, JK ;
Kiss, T ;
Matera, AG ;
Bordonné, M ;
Bertrand, E .
MOLECULAR CELL, 2004, 16 (05) :777-787