Source inversion of heat conduction from a finite number of observation data

被引:6
作者
Castro, L. P. [1 ]
Chen, Q. [1 ]
Saitoh, S. [1 ]
机构
[1] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
基金
日本学术振兴会; 新加坡国家研究基金会;
关键词
Gaussian convolution; Weierstrass transform; heat conduction; reproducing kernel; Paley-Wiener space; Tikhonov regularization;
D O I
10.1080/00036810903569523
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with a backward heat conduction type problem. Namely, the Gaussian convolution is here analysed in a new way so that inverse source formulae to the heat conduction problem are obtained from a finite number of observation data at time and space points. In view of obtaining this main goal, different reproducing kernel Hilbert spaces, iteration schemes and Tikhonov regularization procedures are used and combined in an unified way.
引用
收藏
页码:801 / 813
页数:13
相关论文
共 19 条
[1]  
[Anonymous], 1977, NEW YORK
[2]  
Beck J.V., 1985, Inverse Heat Conduction: Ill-Posed Problems
[3]  
CASTRO LP, MATH ENG SC IN PRESS, V1
[4]  
Fourier JBJ, 1822, Theorie analytique de la chaleur, V504
[5]  
Hao D. N., 1996, METHODEN VERFAHREN M, V43
[6]  
Hirschman I.I., 1955, The Convolution Transform
[7]  
Itou H, 2007, INT J APPL MATH STAT, V12, P76
[8]  
IWAMURA K, FAR E J MAT IN PRESS
[9]  
Matsuura T., 2005, Journal of Inverse and ILL-Posed Problems, V13, P479, DOI 10.1163/156939405775297452
[10]  
Matsuura T., 2005, APPL ANAL, V84, P989