GRADIENT ESTIMATE FOR A NONLINEAR HEAT EQUATION ON RIEMANNIAN MANIFOLDS

被引:15
作者
Jiang, Xinrong [1 ]
机构
[1] Jiangxi Normal Univ, Inst Math & Informat Sci, Nanchang 330022, Peoples R China
关键词
Gradient estimate; nonlinear heat equation; Riemannian manifold; THEOREM;
D O I
10.1090/proc/12995
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive a local Hamilton type gradient estimate for a nonlinear heat equation on Riemannian manifolds. As its application, we obtain a Liouville type theorem.
引用
收藏
页码:3635 / 3642
页数:8
相关论文
共 15 条
[1]   A Liouville-Type Theorem for Smooth Metric Measure Spaces [J].
Brighton, Kevin .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) :562-570
[2]   Differential Harnack estimates for a nonlinear heat equation [J].
Cao, Xiaodong ;
Ljungberg, Benjamin Fayyazuddin ;
Liu, Bowei .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (10) :2312-2330
[3]  
Hamilton R. S., 1993, COMMUN ANAL GEOM, V1, P113
[4]   Gradient estimate for the degenerate parabolic equation ut=ΔF(u)+H(u) on manifolds [J].
Ma, Li ;
Zhao, Lin ;
Song, Xianfa .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (05) :1157-1177
[5]   Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds [J].
Ma, Li .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 241 (01) :374-382
[6]  
Schoen R., 1994, C P LECT NOTES GEOME, VI
[7]   Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds [J].
Souplet, Philippe ;
Zhang, Qi S. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 :1045-1053
[8]  
Wang Lin Feng, 2010, ACTA MATH SINICA, V53, P643
[9]   Gradient estimates for the p-Laplace heat equation under the Ricci flow [J].
Wang, Lin-Feng .
ADVANCES IN GEOMETRY, 2013, 13 (02) :349-368
[10]   Elliptic gradient estimates for a weighted heat equation and applications [J].
Wu, Jia-Yong .
MATHEMATISCHE ZEITSCHRIFT, 2015, 280 (1-2) :451-468