EXPERIMENTAL AND COMPUTATIONAL INVESTIGATIONS OF LOW-PRESSURE TURBINE SEPARATION CONTROL USING VORTEX GENERATOR JETS

被引:0
作者
Volino, Ralph J. [1 ]
Kartuzova, Olga [1 ]
Ibrahim, Mounir B. [1 ]
机构
[1] USN Acad, Dept Mech Engn, Annapolis, MD 21402 USA
来源
PROCEEDINGS OF ASME TURBO EXPO 2009, VOL 7, PTS A AND B | 2009年
关键词
PASSIVE FLOW-CONTROL; AIRFOIL CONDITIONS; FLUID-DYNAMICS; TRANSITION; BLADE;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Boundary layer separation control has been studied using vortex generator jets (VGJs) on a very high lift, low-pressure turbine airfoil. Experiments were done under low freestream turbulence conditions on a linear cascade in a low speed wind tunnel. Pressure surveys on the airfoil surface and downstream total pressure loss surveys were documented. Cases were considered at Reynolds numbers (based on the suction surface length and the nominal exit velocity from the cascade) of 25,000, 50,000 and 100,000. Jet pulsing frequency, duty cycle, and blowing ratio were all varied. In all cases without flow control, the boundary layer separated and did not reattach. With the VGJs, separation control was possible even at the lowest Reynolds number. Pulsed VGJs were more effective than steady jets. At sufficiently high pulsing frequencies, separation control was possible even with low jet velocities and low duty cycles. At lower frequencies, higher jet velocity was required, particularly at low Reynolds numbers. Effective separation control resulted in an increase in lift of up to 20% and a reduction in total pressure losses of up to 70%. Simulations of the flow using an unsteady RANS code with the four equation Transition-sst model produced good agreement with experiments in cases without flow control, correctly predicting separation, transition and reattachment. In cases with VGJs, however, the CFD did not predict the reattachment observed in the experiments.
引用
收藏
页码:1105 / 1117
页数:13
相关论文
共 36 条
  • [1] [Anonymous], GT200230229 ASME
  • [2] [Anonymous], GT200568962 ASME
  • [3] Experiments with three-dimensional passive flow control devices on low-pressure turbine airfoils
    Bohl, Douglas G.
    Volino, Ralph J.
    [J]. JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2006, 128 (02): : 251 - 260
  • [4] Bons J.P., 2008, GT200850864 ASME
  • [5] The fluid dynamics of LPT blade separation control using pulsed jets
    Bons, JP
    Sondergaard, R
    Rivir, RB
    [J]. JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2002, 124 (01): : 77 - 85
  • [6] Turbine separation control using pulsed vortex generator jets
    Bons, JP
    Sondergaard, R
    Rivir, RB
    [J]. JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2001, 123 (02): : 198 - 206
  • [7] BONS JP, 2008, ASME, V130, P21014
  • [8] CLARK JP, 2007, COMMUNICATION
  • [9] Active flow separation control of a stator vane using embedded injection in a multistage compressor experiment
    Culley, DE
    Bright, MM
    Prahst, PS
    Strazisar, AJ
    [J]. JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2004, 126 (01): : 24 - 34
  • [10] ELDREDGE R, 2004, 2004751 AIAA