On zeros of Eisenstein series for genus zero Fuchsian groups

被引:11
作者
Hahn, Heekyoung [1 ]
机构
[1] Univ Rochester, Dept Math, Rochester, NY 14627 USA
基金
美国国家科学基金会;
关键词
Eisenstein series; modular forms; divisor polynomials;
D O I
10.1090/S0002-9939-07-08763-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gamma <= SL2(R) be a genus zero Fuchsian group of the first kind with infinity as a cusp, and let E-2k(Gamma) be the holomorphic Eisenstein series of weight 2k on Gamma that is nonvanishing at infinity and vanishes at all the other cusps (provided that such an Eisenstein series exists). Under certain assumptions on Gamma, and on a choice of a fundamental domain F, we prove that all but possibly c(Gamma,F) of the nontrivial zeros of E-2k(Gamma) lie on a certain subset of {z epsilon h : j(Gamma)(z) is an element of R}. Here c(Gamma, F) is a constant that does not depend on the weight, h is the upper half-plane, and j(Gamma) is the canonical hauptmodul for Gamma.
引用
收藏
页码:2391 / 2401
页数:11
相关论文
共 13 条
[1]  
ANDREWS GE, 1999, ENCY MATH, V71
[2]   Identities for traces of singular moduli [J].
Bringmann, K ;
Ono, K .
ACTA ARITHMETICA, 2005, 119 (04) :317-327
[3]  
Diamond F., 1995, CMS C P, P39
[5]  
Milne J., 1997, MODULAR FUNCTIONS MO
[6]  
Ono K., 2004, WEB MODULARITY ARITH, V102
[7]  
Rankin FKC., 1970, B LOND MATH SOC, V2, P169
[8]  
RANKIN RA, 1982, COMPOS MATH, V46, P255
[9]  
RUDNICK Z, 2005, ASYMPTOTIC DISTRIBUT, P2059
[10]  
Schoeneberg B, 1974, ELLIPTIC MODULAR FUN