Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators

被引:268
作者
Christianson, Caleb [1 ]
Goldberg, Nathaniel N. [2 ]
Deheyn, Dimitri D. [3 ]
Cai, Shengqiang [4 ,5 ]
Tolley, Michael T. [4 ,5 ]
机构
[1] Univ Calif San Diego, Dept NanoEngn, 9500 Gilman Dr, La Jolla, CA 92093 USA
[2] Univ Calif Berkeley, Dept Mech Engn, 6141 Etcheverry Hall, Berkeley, CA 94720 USA
[3] Scripps Inst Oceanog, Marine Biol Res Div, 9500 Gilman Dr, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Dept Mech & Aerosp Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, Mat Sci & Engn Program, 9500 Gilman Dr, La Jolla, CA 92093 USA
关键词
POLYMER DIELECTRICS; ELECTROSTRICTION; HYDRODYNAMICS; TRANSPARENT; COMPLIANT;
D O I
10.1126/scirobotics.aat1893
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Dielectric elastomer actuators (DEAs) are a promising enabling technology for a wide range of emerging applications, including robotics, artificialmuscles, and microfluidics. This is due to their large actuation strains, rapid response rate, low cost and low noise, high energy density, and high efficiency when compared with alternative actuators. These properties make DEAs ideal for the actuation of soft submersible devices, although their use has been limited because of three main challenges: (i) developing suitable, compliant electrodematerials; (ii) the need to effectively insulate the actuator electrodes from the surrounding fluid; and (iii) the rigid frames typically required to prestrain the dielectric layers. We explored the use of a frameless, submersible DEA design that uses an internal chamber filled with liquid as one of the electrodes and the surrounding environmental liquid as the second electrode, thus simplifying the implementation of soft, actuated submersible devices. We demonstrated the feasibility of this approach with a prototype swimming robot composed of transparent bimorph actuator segments and inspired by transparent eel larvae, leptocephali. This design achieved undulatory swimming with a maximum forward swimming speed of 1.9 millimeters per second and a Froude efficiency of 52%. We also demonstrated the capability for camouflage and display through the body of the robot, which has an average transmittance of 94% across the visible spectrum, similar to a leptocephalus. These results suggest a potential for DEAs with fluid electrodes to serve as artificial muscles for quiet, translucent, swimming soft robots for applications including surveillance and the unobtrusive study of marine life.
引用
收藏
页数:8
相关论文
共 57 条
  • [1] Multi-functional dielectric elastomer artificial muscles for soft and smart machines
    Anderson, Iain A.
    Gisby, Todd A.
    McKay, Thomas G.
    O'Brien, Benjamin M.
    Calius, Emilio P.
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 112 (04)
  • [2] [Anonymous], 2010, IEEE Proc OCEANS 2010, DOI 10.1109/OCEANSSYD.2010.5603510
  • [3] A 3D-printed, functionally graded soft robot powered by combustion
    Bartlett, Nicholas W.
    Tolley, Michael T.
    Overvelde, Johannes T. B.
    Weaver, James C.
    Mosadegh, Bobak
    Bertoldi, Katia
    Whitesides, George M.
    Wood, Robert J.
    [J]. SCIENCE, 2015, 349 (6244) : 161 - 165
  • [4] Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer
    Bowden, N
    Brittain, S
    Evans, AG
    Hutchinson, JW
    Whitesides, GM
    [J]. NATURE, 1998, 393 (6681) : 146 - 149
  • [5] Dielectric elastomer actuators with elastomeric electrodes
    Bozlar, Michael
    Punckt, Christian
    Korkut, Sibel
    Zhu, Jian
    Foo, Choon Chiang
    Suo, Zhigang
    Aksay, Ilhan A.
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (09)
  • [6] Advances in Dielectric Elastomers for Actuators and Artificial Muscles
    Brochu, Paul
    Pei, Qibing
    [J]. MACROMOLECULAR RAPID COMMUNICATIONS, 2010, 31 (01) : 10 - 36
  • [7] Hydrogels for Soft Machines
    Calvert, Paul
    [J]. ADVANCED MATERIALS, 2009, 21 (07) : 743 - 756
  • [8] Electromechanical characterisation of dielectric elastomer planar actuators: comparative evaluation of different electrode materials and different counterloads
    Carpi, F
    Chiarelli, P
    Mazzoldi, A
    De Rossi, D
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2003, 107 (01) : 85 - 95
  • [9] Standards for dielectric elastomer transducers
    Carpi, Federico
    Anderson, Iain
    Bauer, Siegfried
    Frediani, Gabriele
    Gallone, Giuseppe
    Gei, Massimiliano
    Graaf, Christian
    Jean-Mistral, Claire
    Kaal, William
    Kofod, Guggi
    Kollosche, Matthias
    Kornbluh, Roy
    Lassen, Benny
    Matysek, Marc
    Michel, Silvain
    Nowak, Stephan
    O'Brien, Benjamin
    Pei, Qibing
    Pelrine, Ron
    Rechenbach, Bjorn
    Rosset, Samuel
    Shea, Herbert
    [J]. SMART MATERIALS AND STRUCTURES, 2015, 24 (10)
  • [10] Stretching Dielectric Elastomer Performance
    Carpi, Federico
    Bauer, Siegfried
    De Rossi, Danilo
    [J]. SCIENCE, 2010, 330 (6012) : 1759 - 1761