Oscillations of nonlinear partial difference systems

被引:3
作者
Liu, ST [1 ]
Chen, GR
机构
[1] Shandong Univ, Coll Control Sci & Engn, Jinan 250061, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
[3] S China Univ Technol, Coll Automat Sci & Engn, Guangzhou 510641, Peoples R China
关键词
nonlinear partial difference systems; oscillation;
D O I
10.1016/S0022-247X(02)00620-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the following two-dimensional nonlinear partial difference systems [GRAPHICS] where m, n is an element of N-0 = {0, 1, 2,...), T(Delta(1), Delta(2)) = Delta(1) + Delta(2) + I, T(del(1) , del(2)) = del(1) + del(2) + I, Delta(1) y(mn) = y(m) + 1,n -y(mn), Delta(2)y(mn) = y(m,n) + 1 - Y-mn, Iy(mn) = y(mn), del(1) y(mn) = y(m-1,n) - y(mn), del(2) y(mn) = y(m,n-1)- y(mn), {a(mn)} and {b(mn)] are real sequences, m, n is an element of N-0, and f, g: R --> R are continuous with uf (u) > 0 and ug(u) > 0 for all u not equal 0. A solution ({x(mn)},{y(mn)}) of the system is oscillatory if both components are oscillatory. Some sufficient conditions for all solutions of this system to be oscillatory are derived. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:689 / 700
页数:12
相关论文
共 14 条
  • [1] Kelley W. G., 1991, Difference equations: An introduction with applications
  • [2] LI XP, 1982, ACTA CHIM SINICA, V40, P688
  • [3] Liu S.T., 1998, DYNAMIC SYSTEMS APPL, V7, P495
  • [4] Liu ST, 2002, COMPUT MATH APPL, V43, P1219, DOI 10.1016/S0898-1221(02)00093-7
  • [5] Liu ST, 2002, COMPUT MATH APPL, V43, P951, DOI 10.1016/S0898-1221(02)80005-0
  • [6] Oscillation theorems for second-order nonlinear partial difference equations
    Liu, ST
    Liu, YQ
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 132 (02) : 479 - 482
  • [7] Nonexistence of positive solutions of a class of nonlinear delay partial difference equations
    Liu, ST
    Guan, XP
    Yang, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 234 (02) : 361 - 371
  • [8] LIU ST, 1998, PAN AM MATH J, V8, P93
  • [9] LVY H, 1992, FINITE DIFFERENCE EQ
  • [10] Strikwerda J. C., 1989, Wadsworth & Brooks/Cole Mathematics Series