A knowledge-driven probabilistic framework for the prediction of protein-protein interaction networks

被引:14
作者
Browne, Fiona [1 ]
Wang, Haiying [1 ]
Zheng, Huiru [1 ]
Azuaje, Francisco [2 ]
机构
[1] Univ Ulster, Sch Comp & Math, Comp Sci Res Inst, Jordanstown BT37 0QB, North Ireland
[2] Publ Res Ctr Hlth CRP Sante, Cardiovasc Res Lab, L-1150 Luxembourg, Luxembourg
关键词
Protein-protein interaction networks; Machine and statistical learning; Omic" datasets; Functional genomics; Computational systems biology; MESSENGER-RNA EXPRESSION; GENOMIC SCALE; INTEGRATION; ABUNDANCE; COMPLEXES; MIXTURE; MODEL;
D O I
10.1016/j.compbiomed.2010.01.002
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study applied a knowledge-driven data integration framework for the inference of protein-protein interactions (PPI). Evidence from diverse genomic features is integrated using a knowledge-driven Bayesian network (KD-BN). Receiver operating characteristic (ROC) curves may not be the optimal assessment method to evaluate a classifier's performance in PPI prediction as the majority of the area under the curve (AUC) may not represent biologically meaningful results. It may be of benefit to interpret the AUC of a partial ROC curve whereby biologically interesting results are represented. Therefore, the novel application of the assessment method referred to as the partial ROC has been employed in this study to assess predictive performance of PPI predictions along with calculating the True positive/false positive rate and true positive/positive rate. By incorporating domain knowledge into the construction of the KD-BN, we demonstrate improvement in predictive performance compared with previous studies based upon the Naive Bayesian approach. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:306 / 317
页数:12
相关论文
共 36 条
[21]   MIPS:: analysis and annotation of proteins from whole genomes [J].
Mewes, HW ;
Amid, C ;
Arnold, R ;
Frishman, D ;
Güldener, U ;
Mannhaupt, G ;
Münsterkötter, M ;
Pagel, P ;
Strack, N ;
Stümpflen, V ;
Warfsmann, J ;
Ruepp, A .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D41-D44
[22]   A primer on learning in Bayesian networks for computational biology [J].
Needham, Chris J. ;
Bradford, James R. ;
Bulpitt, Andrew J. ;
Westhead, David R. .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (08) :1409-1416
[23]   Development of human protein reference database as an initial platform for approaching systems biology in humans [J].
Peri, S ;
Navarro, JD ;
Amanchy, R ;
Kristiansen, TZ ;
Jonnalagadda, CK ;
Surendranath, V ;
Niranjan, V ;
Muthusamy, B ;
Gandhi, TKB ;
Gronborg, M ;
Ibarrola, N ;
Deshpande, N ;
Shanker, K ;
Shivashankar, HN ;
Rashmi, BP ;
Ramya, MA ;
Zhao, ZX ;
Chandrika, KN ;
Padma, N ;
Harsha, HC ;
Yatish, AJ ;
Kavitha, MP ;
Menezes, M ;
Choudhury, DR ;
Suresh, S ;
Ghosh, N ;
Saravana, R ;
Chandran, S ;
Krishna, S ;
Joy, M ;
Anand, SK ;
Madavan, V ;
Joseph, A ;
Wong, GW ;
Schiemann, WP ;
Constantinescu, SN ;
Huang, LL ;
Khosravi-Far, R ;
Steen, H ;
Tewari, M ;
Ghaffari, S ;
Blobe, GC ;
Dang, CV ;
Garcia, JGN ;
Pevsner, J ;
Jensen, ON ;
Roepstorff, P ;
Deshpande, KS ;
Chinnaiyan, AM ;
Hamosh, A .
GENOME RESEARCH, 2003, 13 (10) :2363-2371
[24]  
PONTIUS JU, 2006, NCBI HDB, V1
[25]   A mixture of feature experts approach for protein-protein interaction prediction [J].
Qi, Yanjun ;
Klein-Seetharaman, Judith ;
Bar-Joseph, Ziv .
BMC BIOINFORMATICS, 2007, 8 (Suppl 10)
[26]   Evaluation of different biological data and computational classification methods for use in protein interaction prediction [J].
Qi, YJ ;
Bar-Joseph, Z ;
Klein-Seetharaman, J .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2006, 63 (03) :490-500
[27]   Probabilistic model of the human protein-protein interaction network [J].
Rhodes, DR ;
Tomlins, SA ;
Varambally, S ;
Mahavisno, V ;
Barrette, T ;
Kalyana-Sundaram, S ;
Ghosh, D ;
Pandey, A ;
Chinnaiyan, AM .
NATURE BIOTECHNOLOGY, 2005, 23 (08) :951-959
[28]   Towards a proteome-scale map of the human protein-protein interaction network [J].
Rual, JF ;
Venkatesan, K ;
Hao, T ;
Hirozane-Kishikawa, T ;
Dricot, A ;
Li, N ;
Berriz, GF ;
Gibbons, FD ;
Dreze, M ;
Ayivi-Guedehoussou, N ;
Klitgord, N ;
Simon, C ;
Boxem, M ;
Milstein, S ;
Rosenberg, J ;
Goldberg, DS ;
Zhang, LV ;
Wong, SL ;
Franklin, G ;
Li, SM ;
Albala, JS ;
Lim, JH ;
Fraughton, C ;
Llamosas, E ;
Cevik, S ;
Bex, C ;
Lamesch, P ;
Sikorski, RS ;
Vandenhaute, J ;
Zoghbi, HY ;
Smolyar, A ;
Bosak, S ;
Sequerra, R ;
Doucette-Stamm, L ;
Cusick, ME ;
Hill, DE ;
Roth, FP ;
Vidal, M .
NATURE, 2005, 437 (7062) :1173-1178
[29]   Probabilistic prediction and ranking of human protein-protein interactions [J].
Scott, Michelle S. ;
Barton, Geoffrey J. .
BMC BIOINFORMATICS, 2007, 8 (1)
[30]   A human protein-protein interaction network:: A resource for annotating the proteome [J].
Stelzl, U ;
Worm, U ;
Lalowski, M ;
Haenig, C ;
Brembeck, FH ;
Goehler, H ;
Stroedicke, M ;
Zenkner, M ;
Schoenherr, A ;
Koeppen, S ;
Timm, J ;
Mintzlaff, S ;
Abraham, C ;
Bock, N ;
Kietzmann, S ;
Goedde, A ;
Toksöz, E ;
Droege, A ;
Krobitsch, S ;
Korn, B ;
Birchmeier, W ;
Lehrach, H ;
Wanker, EE .
CELL, 2005, 122 (06) :957-968