A knowledge-driven probabilistic framework for the prediction of protein-protein interaction networks

被引:14
作者
Browne, Fiona [1 ]
Wang, Haiying [1 ]
Zheng, Huiru [1 ]
Azuaje, Francisco [2 ]
机构
[1] Univ Ulster, Sch Comp & Math, Comp Sci Res Inst, Jordanstown BT37 0QB, North Ireland
[2] Publ Res Ctr Hlth CRP Sante, Cardiovasc Res Lab, L-1150 Luxembourg, Luxembourg
关键词
Protein-protein interaction networks; Machine and statistical learning; Omic" datasets; Functional genomics; Computational systems biology; MESSENGER-RNA EXPRESSION; GENOMIC SCALE; INTEGRATION; ABUNDANCE; COMPLEXES; MIXTURE; MODEL;
D O I
10.1016/j.compbiomed.2010.01.002
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study applied a knowledge-driven data integration framework for the inference of protein-protein interactions (PPI). Evidence from diverse genomic features is integrated using a knowledge-driven Bayesian network (KD-BN). Receiver operating characteristic (ROC) curves may not be the optimal assessment method to evaluate a classifier's performance in PPI prediction as the majority of the area under the curve (AUC) may not represent biologically meaningful results. It may be of benefit to interpret the AUC of a partial ROC curve whereby biologically interesting results are represented. Therefore, the novel application of the assessment method referred to as the partial ROC has been employed in this study to assess predictive performance of PPI predictions along with calculating the True positive/false positive rate and true positive/positive rate. By incorporating domain knowledge into the construction of the KD-BN, we demonstrate improvement in predictive performance compared with previous studies based upon the Naive Bayesian approach. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:306 / 317
页数:12
相关论文
共 36 条
[1]  
[Anonymous], 2006, 23 INT C MACH LEARN, DOI [DOI 10.1145/1143844.1143874, 10.1145/1143844.1143874]
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]  
AUSUBEL FM, 2008, CURRENT PROTOCOLS MO, V3
[4]   Choosing negative examples for the prediction of protein-protein interactions [J].
Ben-Hur, A ;
Noble, WS .
BMC BIOINFORMATICS, 2006, 7 (Suppl 1)
[5]   Online predicted human interaction database [J].
Brown, KR ;
Jurisica, I .
BIOINFORMATICS, 2005, 21 (09) :2076-2082
[6]  
BROWNE F, 2008, CICBC 2008, V5, P28
[7]   A genome-wide transcriptional analysis of the mitotic cell cycle [J].
Cho, RJ ;
Campbell, MJ ;
Winzeler, EA ;
Steinmetz, L ;
Conway, A ;
Wodicka, L ;
Wolfsberg, TG ;
Gabrielian, AE ;
Landsman, D ;
Lockhart, DJ ;
Davis, RW .
MOLECULAR CELL, 1998, 2 (01) :65-73
[8]   Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae [J].
Collins, Sean R. ;
Kemmeren, Patrick ;
Zhao, Xue-Chu ;
Greenblatt, Jack F. ;
Spencer, Forrest ;
Holstege, Frank C. P. ;
Weissman, Jonathan S. ;
Krogan, Nevan J. .
MOLECULAR & CELLULAR PROTEOMICS, 2007, 6 (03) :439-450
[9]   THE COMPUTATIONAL-COMPLEXITY OF PROBABILISTIC INFERENCE USING BAYESIAN BELIEF NETWORKS [J].
COOPER, GF .
ARTIFICIAL INTELLIGENCE, 1990, 42 (2-3) :393-405
[10]   Protein interaction mapping:: A Drosophila case study [J].
Formstecher, E ;
Aresta, S ;
Collura, V ;
Hamburger, A ;
Meil, A ;
Trehin, A ;
Reverdy, C ;
Betin, V ;
Maire, S ;
Brun, C ;
Jacq, B ;
Arpin, M ;
Bellaiche, Y ;
Bellusci, S ;
Benaroch, P ;
Bornens, M ;
Chanet, R ;
Chavrier, P ;
Delattre, O ;
Doye, V ;
Fehon, R ;
Faye, G ;
Galli, T ;
Girault, JA ;
Goud, B ;
de Gunzburg, J ;
Johannes, L ;
Junier, MP ;
Mirouse, V ;
Mukherjee, A ;
Papadopoulo, D ;
Perez, F ;
Plessis, A ;
Rossé, C ;
Saule, S ;
Stoppa-Lyonnet, D ;
Vincent, A ;
White, M ;
Legrain, P ;
Wojcik, J ;
Camonis, J ;
Daviet, L .
GENOME RESEARCH, 2005, 15 (03) :376-384