Emergence of quasiperiodic Bloch wave functions in quasicrystals

被引:10
作者
Lesser, Omri [1 ]
Lifshitz, Ron [2 ,3 ]
机构
[1] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-7610001 Rehovot, Israel
[2] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel
[3] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 01期
基金
以色列科学基金会;
关键词
KRONIG-PENNEY MODEL; DIMENSIONAL SCHRODINGER-EQUATION; SINGULAR CONTINUOUS-SPECTRUM; QUANTUM-MECHANICS; CANTOR-SET; LOCALIZATION; ELECTRONS; ABSENCE; CONDUCTIVITY; DIFFUSION;
D O I
10.1103/PhysRevResearch.4.013226
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the emergence of quasiperiodic Bloch wave functions in quasicrystals, employing the one-dimensional Fibonacci model as a test case. We find that despite the fact that Bloch functions are not eigenfunctions themselves, superpositions of relatively small numbers of nearly degenerate eigenfunctions give rise to extended quasiperiodic Bloch functions. These functions possess the structure of earlier ancestors of the underlying Fibonacci potential, and it is often possible to obtain different ancestors as different superpositions around the same energy. There exists an effective crystal momentum that characterizes these ancestors, which is determined by the mean energy of the superimposed eigenfunctions, giving rise to an effective dispersion curve. We also find that quasiperiodic Bloch functions do emerge as eigenfunctions when weak disorder is introduced into the otherwise perfect quasiperiodic potential. These theoretical results may explain a number of experimental observations, and may have practical consequences on emerging theories of band topology and correlated electrons in quasicrystals.
引用
收藏
页数:9
相关论文
共 87 条
[1]   SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS [J].
ABRAHAMS, E ;
ANDERSON, PW ;
LICCIARDELLO, DC ;
RAMAKRISHNAN, TV .
PHYSICAL REVIEW LETTERS, 1979, 42 (10) :673-676
[2]   Dirac electrons in a dodecagonal graphene quasicrystal [J].
Ahn, Sung Joon ;
Moon, Pilkyung ;
Kim, Tae-Hoon ;
Kim, Hyun-Woo ;
Shin, Ha-Chul ;
Kim, Eun Hye ;
Cha, Hyun Woo ;
Kahng, Se-Jong ;
Kim, Philip ;
Koshino, Mikito ;
Son, Young-Woo ;
Yang, Cheol-Woong ;
Ahn, Joung Real .
SCIENCE, 2018, 361 (6404) :782-+
[3]   Relating diffraction and spectral data of aperiodic tilings: Towards a Bloch theorem [J].
Akkermans, Eric ;
Don, Yaroslav ;
Rosenberg, Jonathan ;
Schochet, Claude L. .
JOURNAL OF GEOMETRY AND PHYSICS, 2021, 165
[4]   Interactions and Mobility Edges: Observing the Generalized Aubry-Andre Model [J].
An, Fangzhao Alex ;
Padavic, Karmela ;
Meier, Eric J. ;
Hegde, Suraj ;
Ganeshan, Sriram ;
Pixley, J. H. ;
Vishveshwara, Smitha ;
Gadway, Bryce .
PHYSICAL REVIEW LETTERS, 2021, 126 (04)
[5]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[6]  
[Anonymous], 1975, Funct. Anal. Appl.
[7]   Conventional superconductivity in quasicrystals [J].
Araujo, Ronaldo N. ;
Andrade, Eric C. .
PHYSICAL REVIEW B, 2019, 100 (01)
[8]  
Ashcroft N. W., 1976, Solid State Physics
[9]   EXACT DECIMATION APPROACH TO THE GREEN-FUNCTIONS OF THE FIBONACCI-CHAIN QUASICRYSTAL [J].
ASHRAFF, JA ;
STINCHCOMBE, RB .
PHYSICAL REVIEW B, 1988, 37 (10) :5723-5729
[10]  
Aubry S., 1980, Annals of the Israel Physical Society, V3, P133