Estimation of Parameters of Different Equivalent Circuit Models of Solar Cells and Various Photovoltaic Modules Using Hybrid Variants of Honey Badger Algorithm and Artificial Gorilla Troops Optimizer

被引:31
作者
Rawa, Muhyaddin [1 ,2 ]
Abusorrah, Abdullah [1 ,2 ]
Al-Turki, Yusuf [1 ,2 ]
Calasan, Martin [3 ]
Micev, Mihailo [3 ]
Ali, Ziad M. [4 ,5 ]
Mekhilef, Saad [1 ,6 ]
Bassi, Hussain [1 ,7 ]
Sindi, Hatem [1 ,2 ]
Aleem, Shady H. E. Abdel [8 ]
机构
[1] King Abdulaziz Univ, Ctr Res Excellence Renewable Energy & Power Syst, Jeddah 21589, Saudi Arabia
[2] King Abdulaziz Univ, Fac Engn, Dept Elect & Comp Engn, Jeddah 21589, Saudi Arabia
[3] Univ Montenegro, Fac Elect Engn, Podgorica 81000, Montenegro
[4] Prince Sattam Bin Abdulaziz Univ, Coll Engn, Elect Engn Dept, Wadi Addawaser 11991, Saudi Arabia
[5] Aswan Univ, Aswan Fac Engn, Elect Engn Dept, Aswan 81542, Egypt
[6] Univ Malaya, Dept Elect Engn, Power Elect & Renewable Energy Res Lab PEARL, Kuala Lumpur 50603, Malaysia
[7] King Abdulaziz Univ, Fac Engn, Dept Elect Engn, Rabigh 25732, Saudi Arabia
[8] Sci Valley Acad, Valley High Inst Engn & Technol, Dept Elect Engn, Qalyubia 44971, Egypt
关键词
artificial gorilla troops optimizer; honey badger algorithm; hybrid algorithms; metaheuristic algorithms; renewable energy sources; solar energy; parameter estimation; PARTICLE SWARM OPTIMIZATION; SEARCH ALGORITHM; SINGLE-DIODE; EXTRACTION; IDENTIFICATION; PERFORMANCE; EVOLUTION;
D O I
10.3390/math10071057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Parameters of the solar cell equivalent circuit models have a significant role in assessing the solar cells' performance and tracking operational variations. In this regard, estimating solar cell parameters is a difficult task because cells have nonlinear current-voltage characteristics. Thus, a fast and accurate optimization algorithm is usually required to solve this engineering problem effectively. This paper proposes two hybrid variants of honey badger algorithm (HBA) and artificial gorilla troops optimizer (GTO) to estimate solar cell parameters. The proposed algorithms minimize the root mean square error (RMSE) between measurement and simulation results. In the first variant, GTO is used to determine the initial population of HBA, while in the second variant, HBA is used to determine the initial population of GTO. These variants can efficiently improve convergence characteristics. The proposed optimization algorithms are applied for parameter estimation of different equivalent circuit models of solar cells and various photovoltaic (PV) modules. Namely, the proposed algorithms test three solar cell equivalent models: single-diode, double-diode, and triple-diode equivalent circuit models. Different photovoltaic modules are investigated, such as the RadioTechnique Compelec (RTC) France solar cell, Solarex's Multicrystalline 60 watts solar module (MSX 60), and the Photowatt, France solar panel (Photo-watt PWP 201). In addition, the applicability of the proposed optimization algorithms is verified using obtained results from a commercial solar module called Shell Monocrystalline PV module (SM55) with different irradiation and temperature levels. The good results of the proposed algorithms show that they can efficiently improve convergence speed and the accuracy of the obtained results than other algorithms used for parameter estimation of PV equivalent circuit models in the literature, particularly in terms of the values of the RMSE and statistical tests. In addition, the parameters estimated by the proposed methods fit the simulation data perfectly at different irradiance and temperature levels for the commercial PV module.
引用
收藏
页数:31
相关论文
共 62 条
[21]   Short-term solar power forecasting considering cloud coverage and ambient temperature variation effects [J].
Gandoman, Foad H. ;
Aleem, Shady H. E. Abdel ;
Omar, Noshin ;
Ahmadi, Abdollah ;
Alenezi, Faisal Q. .
RENEWABLE ENERGY, 2018, 123 :793-805
[22]   Parameter extraction of solar cell models using improved shuffled complex evolution algorithm [J].
Gao, Xiankun ;
Cui, Yan ;
Hu, Jianjun ;
Xu, Guangyin ;
Wang, Zhenfeng ;
Qu, Jianhua ;
Wang, Heng .
ENERGY CONVERSION AND MANAGEMENT, 2018, 157 :460-479
[23]   Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems [J].
Ginidi, Ahmed ;
Ghoneim, Sherif M. ;
Elsayed, Abdallah ;
El-Sehiemy, Ragab ;
Shaheen, Abdullah ;
El-Fergany, Attia .
SUSTAINABILITY, 2021, 13 (16)
[24]   A combination of Newton-Raphson method and heuristics algorithms for parameter estimation in photovoltaic modules [J].
Gnetchejo, Patrick Juvet ;
Essiane, Salome Ndjakomo ;
Dadje, Abdouramani ;
Ele, Pierre .
HELIYON, 2021, 7 (04)
[25]   Parameter extraction of photovoltaic cell using an improved cuckoo search optimization [J].
Gude, Srihari ;
Jana, Kartick Chandra .
SOLAR ENERGY, 2020, 204 :280-293
[26]   Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems [J].
Hashim, Fatma A. ;
Houssein, Essam H. ;
Hussain, Kashif ;
Mabrouk, Mai S. ;
Al-Atabany, Walid .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 192 :84-110
[27]   State-of-the-art of hosting capacity in modern power systems with distributed generation [J].
Ismael, Sherif M. ;
Aleem, Shady H. E. Abdel ;
Abdelaziz, Almoataz Y. ;
Zobaa, Ahmed F. .
RENEWABLE ENERGY, 2019, 130 :1002-1020
[28]   Ions motion algorithm for solving optimization problems [J].
Javidy, Behzad ;
Hatamlou, Abdolreza ;
Mirjalili, Seyedali .
APPLIED SOFT COMPUTING, 2015, 32 :72-79
[29]   Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models [J].
Jiao, Shan ;
Chong, Guoshuang ;
Huang, Changcheng ;
Hu, Hanqing ;
Wang, Mingjing ;
Heidari, Ali Asghar ;
Chen, Huiling ;
Zhao, Xuehua .
ENERGY, 2020, 203
[30]   Time varying acceleration coefficients particle swarm optimisation (TVACPSO): A new optimisation algorithm for estimating parameters of PV cells and modules [J].
Jordehi, Ahmad Rezaee .
ENERGY CONVERSION AND MANAGEMENT, 2016, 129 :262-274