Estimation of Parameters of Different Equivalent Circuit Models of Solar Cells and Various Photovoltaic Modules Using Hybrid Variants of Honey Badger Algorithm and Artificial Gorilla Troops Optimizer

被引:26
作者
Rawa, Muhyaddin [1 ,2 ]
Abusorrah, Abdullah [1 ,2 ]
Al-Turki, Yusuf [1 ,2 ]
Calasan, Martin [3 ]
Micev, Mihailo [3 ]
Ali, Ziad M. [4 ,5 ]
Mekhilef, Saad [1 ,6 ]
Bassi, Hussain [1 ,7 ]
Sindi, Hatem [1 ,2 ]
Aleem, Shady H. E. Abdel [8 ]
机构
[1] King Abdulaziz Univ, Ctr Res Excellence Renewable Energy & Power Syst, Jeddah 21589, Saudi Arabia
[2] King Abdulaziz Univ, Fac Engn, Dept Elect & Comp Engn, Jeddah 21589, Saudi Arabia
[3] Univ Montenegro, Fac Elect Engn, Podgorica 81000, Montenegro
[4] Prince Sattam Bin Abdulaziz Univ, Coll Engn, Elect Engn Dept, Wadi Addawaser 11991, Saudi Arabia
[5] Aswan Univ, Aswan Fac Engn, Elect Engn Dept, Aswan 81542, Egypt
[6] Univ Malaya, Dept Elect Engn, Power Elect & Renewable Energy Res Lab PEARL, Kuala Lumpur 50603, Malaysia
[7] King Abdulaziz Univ, Fac Engn, Dept Elect Engn, Rabigh 25732, Saudi Arabia
[8] Sci Valley Acad, Valley High Inst Engn & Technol, Dept Elect Engn, Qalyubia 44971, Egypt
关键词
artificial gorilla troops optimizer; honey badger algorithm; hybrid algorithms; metaheuristic algorithms; renewable energy sources; solar energy; parameter estimation; PARTICLE SWARM OPTIMIZATION; SEARCH ALGORITHM; SINGLE-DIODE; EXTRACTION; IDENTIFICATION; PERFORMANCE; EVOLUTION;
D O I
10.3390/math10071057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Parameters of the solar cell equivalent circuit models have a significant role in assessing the solar cells' performance and tracking operational variations. In this regard, estimating solar cell parameters is a difficult task because cells have nonlinear current-voltage characteristics. Thus, a fast and accurate optimization algorithm is usually required to solve this engineering problem effectively. This paper proposes two hybrid variants of honey badger algorithm (HBA) and artificial gorilla troops optimizer (GTO) to estimate solar cell parameters. The proposed algorithms minimize the root mean square error (RMSE) between measurement and simulation results. In the first variant, GTO is used to determine the initial population of HBA, while in the second variant, HBA is used to determine the initial population of GTO. These variants can efficiently improve convergence characteristics. The proposed optimization algorithms are applied for parameter estimation of different equivalent circuit models of solar cells and various photovoltaic (PV) modules. Namely, the proposed algorithms test three solar cell equivalent models: single-diode, double-diode, and triple-diode equivalent circuit models. Different photovoltaic modules are investigated, such as the RadioTechnique Compelec (RTC) France solar cell, Solarex's Multicrystalline 60 watts solar module (MSX 60), and the Photowatt, France solar panel (Photo-watt PWP 201). In addition, the applicability of the proposed optimization algorithms is verified using obtained results from a commercial solar module called Shell Monocrystalline PV module (SM55) with different irradiation and temperature levels. The good results of the proposed algorithms show that they can efficiently improve convergence speed and the accuracy of the obtained results than other algorithms used for parameter estimation of PV equivalent circuit models in the literature, particularly in terms of the values of the RMSE and statistical tests. In addition, the parameters estimated by the proposed methods fit the simulation data perfectly at different irradiance and temperature levels for the commercial PV module.
引用
收藏
页数:31
相关论文
共 62 条
[1]   Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm [J].
Abd Elaziz, Mohamed ;
Oliva, Diego .
ENERGY CONVERSION AND MANAGEMENT, 2018, 171 :1843-1859
[2]   An efficient teaching-learning-based optimization algorithm for parameters identification of photovoltaic models: Analysis and validations [J].
Abdel-Basset, Mohamed ;
Mohamed, Reda ;
Chakrabortty, Ripon K. ;
Sallam, Karam ;
Ryan, Michael J. .
ENERGY CONVERSION AND MANAGEMENT, 2021, 227
[3]   Solar photovoltaic parameter estimation using an improved equilibrium optimizer [J].
Abdel-Basset, Mohamed ;
Mohamed, Reda ;
Mirjalili, Seyedali ;
Chakrabortty, Ripon K. ;
Ryan, Michael J. .
SOLAR ENERGY, 2020, 209 :694-708
[4]   Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems [J].
Abdollahzadeh, Benyamin ;
Gharehchopogh, Farhad Soleimanian ;
Mirjalili, Seyedali .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (10) :5887-5958
[5]   Aquila Optimizer: A novel meta-heuristic optimization algorithm [J].
Abualigah, Laith ;
Yousri, Dalia ;
Abd Elaziz, Mohamed ;
Ewees, Ahmed A. ;
Al-qaness, Mohammed A. A. ;
Gandomi, Amir H. .
COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 157 (157)
[6]   A mathematical modeling framework to evaluate the performance of single diode and double diode based SPV systems [J].
Bana, Sangram ;
Saini, R. P. .
ENERGY REPORTS, 2016, 2 :171-187
[7]   Towards accurate calculation of supercapacitor electrical variables in constant power applications using new analytical closed-form expressions [J].
Calasan, Martin ;
Zobaa, Ahmed F. ;
Hasanien, Hany M. ;
Aleem, Shady H. E. Abdel ;
Ali, Ziad M. .
JOURNAL OF ENERGY STORAGE, 2021, 42
[8]   A new approach for parameters estimation of double and triple diode models of photovoltaic cells based on iterative Lambert W function [J].
Calasan, Martin ;
Aleem, Shady H. E. Abdel ;
Zobaa, Ahmed F. .
SOLAR ENERGY, 2021, 218 (218) :392-412
[9]   On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function [J].
Calasan, Martin ;
Aleem, Shady H. E. Abdel ;
Zobaa, Ahmed F. .
ENERGY CONVERSION AND MANAGEMENT, 2020, 210
[10]   Estimation of Single-Diode and Two-Diode Solar Cell Parameters by Using a Chaotic Optimization Approach [J].
Calasan, Martin ;
Jovanovic, Drazen ;
Rubezic, Vesna ;
Mujovic, Sasa ;
Dukanovic, Slobodan .
ENERGIES, 2019, 12 (21)