Strategies for handling missing clinical data for automated surgical site infection detection from the electronic health record

被引:61
|
作者
Hu, Zhen [1 ]
Melton, Genevieve B. [1 ,2 ]
Arsoniadis, Elliot G. [1 ,2 ]
Wang, Yan [1 ]
Kwaan, Mary R. [2 ]
Simon, Gyorgy J. [1 ,3 ]
机构
[1] Univ Minnesota, Inst Hlth Informat, 420 Delaware St SE,MMC 912, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Surg, Box 242 UMHC, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Dept Med, 420 Delaware St SE,MMC 912, Minneapolis, MN 55455 USA
基金
美国医疗保健研究与质量局; 美国国家卫生研究院;
关键词
Electronic health records; Surgical site infections; Missing data; MULTIVARIATE IMPUTATION; MULTIPLE IMPUTATION; COLORECTAL SURGERY; QUALITY; CARE; IMPROVEMENT; NETWORK; IMPACT; COST;
D O I
10.1016/j.jbi.2017.03.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Proper handling of missing data is important for many secondary uses of electronic health record (EHR) data. Data imputation methods can be used to handle missing data, but their use for analyzing EHR data is limited and specific efficacy for postoperative complication detection is unclear. Several data imputation methods were used to develop data models for automated detection of three types (i.e., superficial, deep, and organ space) of surgical site infection (SSI) and overall SSI using American College of Surgeons National Surgical Quality Improvement Project (NSQIP) Registry 30-day SSI occurrence data as a reference standard. Overall, models with missing data imputation almost always outperformed reference models without imputation that included only cases with complete data for detection of SSI overall achieving very good average area under the curve values. Missing data imputation appears to be an effective means for improving postoperative SSI detection using EHR clinical data. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:112 / 120
页数:9
相关论文
共 50 条
  • [1] Automated Detection of Postoperative Surgical Site Infections Using Supervised Methods with Electronic Health Record Data
    Hu, Zhen
    Simon, Gyorgy J.
    Arsoniadis, Elliot G.
    Wang, Yan
    Kwaan, Mary R.
    Melton, Genevieve B.
    MEDINFO 2015: EHEALTH-ENABLED HEALTH, 2015, 216 : 706 - 710
  • [2] Imputation and Missing Indicators for Handling Missing Longitudinal Data: Data Simulation Analysis Based on Electronic Health Record Data
    Ehrig, Molly
    Bullock, Garrett S.
    Leng, Xiaoyan Iris
    Pajewski, Nicholas M.
    Speiser, Jaime Lynn
    JMIR MEDICAL INFORMATICS, 2025, 13
  • [3] Missing clinical and behavioral health data in a large electronic health record (EHR) system
    Madden, Jeanne M.
    Lakoma, Matthew D.
    Rusinak, Donna
    Lu, Christine Y.
    Soumerai, Stephen B.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2016, 23 (06) : 1143 - 1149
  • [4] Imputation of missing values for electronic health record laboratory data
    Li, Jiang
    Yan, Xiaowei S.
    Chaudhary, Durgesh
    Avula, Venkatesh
    Mudiganti, Satish
    Husby, Hannah
    Shahjouei, Shima
    Afshar, Ardavan
    Stewart, Walter F.
    Yeasin, Mohammed
    Zand, Ramin
    Abedi, Vida
    NPJ DIGITAL MEDICINE, 2021, 4 (01)
  • [5] A novel method for handling Missing Not at Random Data in the electronic health records
    Shen, Xinpeng
    Ma, Sisi
    Caraballo, Pedro J.
    Vemuri, Prashanthi
    Simon, Gyorgy J.
    2022 IEEE 10TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2022), 2022, : 21 - 26
  • [6] Predicting Hospitalizations From Electronic Health Record Data
    Morawski, Kyle
    Dvorkis, Yoni
    Monsen, Craig B.
    AMERICAN JOURNAL OF MANAGED CARE, 2020, 26 (01) : E7 - +
  • [7] Informative missingness: What can we learn from patterns in missing laboratory data in the electronic health record?
    Tan, Amelia L. M.
    Getzen, Emily J.
    Hutch, Meghan R.
    Strasser, Zachary H.
    Gutierrez-Sacristan, Alba
    Le, Trang T.
    Dagliati, Arianna
    Morris, Michele
    Hanauer, David A.
    Moal, Bertrand
    Bonzel, Clara -Lea
    Yuan, William
    Chiudinelli, Lorenzo
    Das, Priam
    Zhang, Harrison G.
    Aronow, Bruce J.
    Avillach, Paul
    Brat, Gabriel. A.
    Cai, Tianxi
    Hong, Chuan
    La Cava, William G.
    Loh, He Hooi Will
    Luo, Yuan
    Murphy, Shawn N.
    Hgiam, Kee Yuan
    Omenn, Gilbert S.
    Patel, Lav P.
    Samayamuthu, Malarkodi Jebathilagam
    Shriver, Emily R.
    Abad, Zahra Shakeri Hossein
    Tan, Byorn W. L.
    Visweswaran, Shyam
    Wang, Xuan
    Weber, Griffin M.
    Xia, Zongqi
    Verdy, Bertrand
    Long, Qi
    Mowery, Danielle L.
    Holmes, John H.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2023, 139
  • [8] Secondary use of electronic health record data for clinical workflow analysis
    Hribar, Michelle R.
    Read-Brown, Sarah
    Goldstein, Isaac H.
    Reznick, Leah G.
    Lombardi, Lorinna
    Parikh, Mansi
    Chamberlain, Winston
    Chiang, Michael F.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2018, 25 (01) : 40 - 46
  • [9] Technological Advances in Clinical Definition and Surveillance Methodology for Surgical Site Infection Incorporating Surgical Site Imaging and Patient-Generated Health Data
    Sawyer, Robert G.
    Evans, Heather L.
    Hedrick, Traci L.
    SURGICAL INFECTIONS, 2019, 20 (07) : 541 - 545
  • [10] Electronic health record: confidentiality and privacy of clinical data
    Gil Yacobazzo, Juan Eduardo
    Viega Rodriguez, Maria Jose
    REVISTA MEDICA DEL URUGUAY, 2018, 34 (04): : 228 - 233