Harnack inequality for nonlinear harmonic spaces

被引:4
作者
Boukricha, A [1 ]
机构
[1] Fac Sci Tunis, Dept Math, Tunis 1060, Tunisia
关键词
D O I
10.1007/PL00004414
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:567 / 583
页数:17
相关论文
共 24 条
[1]  
BAUER H, 1966, LECT NOTES MATH, V22
[2]  
Bertin E. M. J., 1990, 607 U UTR
[3]  
Bliedtner J, 1986, POTENTIAL THEORY ANA
[4]  
BONY JM, 1970, POTENTIAL THEORY, P69
[5]   WHY 2ND-ORDER PARABOLIC-SYSTEMS [J].
BOUKRICHA, A ;
SIEVEKING, M .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1986, 16 (01) :33-54
[6]  
BOUKRICHA A, 1987, EXPO MATH, V5, P97
[7]  
Constantinescu C., 1972, Potential Theory on Harmonic Spaces
[8]   A PROBABILISTIC APPROACH TO ONE CLASS OF NONLINEAR DIFFERENTIAL-EQUATIONS [J].
DYNKIN, EB .
PROBABILITY THEORY AND RELATED FIELDS, 1991, 89 (01) :89-115
[9]  
Friedman A., 1964, Partial Differential Equations of Parabolic Type
[10]  
Gilbar D., 1983, ELLIPTIC PARTIAL DIF