A Wearable Lower Limb Exoskeleton: Reducing the Energy Cost of Human Movement

被引:32
|
作者
Tang, Xinyao [1 ,2 ]
Wang, Xupeng [1 ,2 ]
Ji, Xiaomin [1 ,2 ]
Zhou, Yawen [2 ]
Yang, Jie [2 ]
Wei, Yuchen [2 ]
Zhang, Wenjie [2 ]
机构
[1] Xian Univ Technol, Sch Mech & Precis Instrument Engn, Xian 710048, Peoples R China
[2] Xian Univ Technol, Res Ctr Civil Mil Integrat & Protect Equipment De, Xian 710054, Peoples R China
关键词
lower limb exoskeleton; wearable device; assisted movement; metabolic cost; LOWER-EXTREMITY-EXOSKELETON; PASSIVE KNEE EXOSKELETON; METABOLIC COST; LEG EXOSKELETON; DESIGN; WALKING; ORTHOSIS; ACTUATOR; ROBOT; REHABILITATION;
D O I
10.3390/mi13060900
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Human body enhancement is an interesting branch of robotics. It focuses on wearable robots in order to improve the performance of human body, reduce energy consumption and delay fatigue, as well as increase body speed. Robot-assisted equipment, such as wearable exoskeletons, are wearable robot systems that integrate human intelligence and robot power. After careful design and adaptation, the human body has energy-saving sports, but it is an arduous task for the exoskeleton to achieve considerable reduction in metabolic rate. Therefore, it is necessary to understand the biomechanics of human sports, the body, and its weaknesses. In this study, a lower limb exoskeleton was classified according to the power source, and the working principle, design idea, wearing mode, material and performance of different types of lower limb exoskeletons were compared and analyzed. The study shows that the unpowered exoskeleton robot has inherent advantages in endurance, mass, volume, and cost, which is a new development direction of robot exoskeletons. This paper not only summarizes the existing research but also points out its shortcomings through the comparative analysis of different lower limb wearable exoskeletons. Furthermore, improvement measures suitable for practical application have been provided.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] Sensing Pressure Distribution on a Lower-Limb Exoskeleton Physical Human-Machine Interface
    De Rossi, Stefano Marco Maria
    Vitiello, Nicola
    Lenzi, Tommaso
    Ronsse, Renaud
    Koopman, Bram
    Persichetti, Alessandro
    Vecchi, Fabrizio
    Ijspeert, Auke Jan
    van der Kooij, Herman
    Carrozza, Maria Chiara
    SENSORS, 2011, 11 (01) : 207 - 227
  • [2] A REVIEW ON HUMAN-EXOSKELETON COORDINATION TOWARDS LOWER LIMB ROBOTIC EXOSKELETON SYSTEMS
    Ma, Yue
    Wu, Xinyu
    Yi, Jingang
    Wang, Can
    Chen, Chunjie
    INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2019, 34 (04) : 431 - 451
  • [3] Biomimetic compliant lower limb exoskeleton (BioComEx) and its experimental evaluation
    Baser, Ozgur
    Kizilhan, Hasbi
    Kilic, Ergin
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2019, 41 (05)
  • [4] Design and Optimization of Human-Machine Interaction Wearable Device for Lower Limb Rehabilitation Exoskeleton
    Zhang, Yueyang
    Wang, Jianhua
    Chen, Weihai
    Zhang, Jianbin
    Chen, Zuobing
    PROCEEDINGS OF THE 2021 IEEE 16TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2021), 2021, : 2101 - 2106
  • [5] Human-in-the-Loop Control for AGoRA Unilateral Lower-Limb Exoskeleton
    Mayag, Luis J. Arciniegas
    Munera, Marcela
    Cifuentes, Carlos A.
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2022, 104 (01)
  • [6] Design of a Wearable Lower Limb Exoskeleton for Paralyzed Individuals
    Zhu, Zhiyong
    Jiang, Chong
    Wang, Xingsong
    Chen, Jianhua
    He, Lu
    Wu, Qingcong
    PROCEEDINGS OF 2016 23RD INTERNATIONAL CONFERENCE ON MECHATRONICS AND MACHINE VISION IN PRACTICE (M2VIP), 2016, : 202 - 207
  • [7] MECHANICAL ANALYSIS OF WEARABLE LOWER LIMB EXOSKELETON FOR REHABILITATION
    Wong, Z. Y.
    Ishak, A. J.
    Ahmad, S. A.
    Chong, Y. Z.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2014, 9 : 107 - 114
  • [8] The Concept of Flexible Lower Limb Powered-Exoskeleton for Human Performance Augmentation: A Review
    Aljaifi, Taha
    Zain, Badrul Aisham Md
    Maity, Arindam
    Huq, Saif
    INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2024, 16 (09): : 230 - 246
  • [9] Lower limb biomechanics of fully trained exoskeleton users reveal complex mechanisms behind the reductions in energy cost with human-in-the-loop optimization
    Poggensee, Katherine L.
    Collins, Steven H.
    FRONTIERS IN ROBOTICS AND AI, 2024, 11
  • [10] Lower Extremity Exoskeleton for Human Spinal Cord Injury: A Comprehensive Review
    Wang, Tianci
    Song, Zaixin
    Wen, Hao
    Liu, Chunhua
    IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY, 2024, 5 : 575 - 595