A new online detector for estimation of peripheral neutron equivalent dose in organ

被引:23
作者
Irazola, L. [1 ,2 ]
Lorenzoli, M. [3 ]
Bedogni, R. [4 ]
Pola, A. [3 ]
Terron, J. A. [2 ]
Sanchez-Nieto, B. [5 ]
Exposito, M. R. [6 ]
Lagares, J. I. [7 ]
Sansaloni, F. [7 ]
Sanchez-Doblado, F. [1 ,2 ]
机构
[1] Univ Seville, Dept Fisiol Med & Biofis, E-41009 Seville, Spain
[2] Hosp Univ Virgen Macarena, Serv Radiofis, Seville 41007, Spain
[3] Politecn Milan, Dept Ingn Nucl, I-20133 Milan, Italy
[4] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati Roma, Italy
[5] Pontificia Univ Catolica Chile, Inst Fis, Santiago 4880, Chile
[6] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Spain
[7] Ctr Invest Energet & Medioambientales & Tecnol CI, Madrid 28040, Spain
关键词
peripheral dose; neutron detector; second cancer; RADIOTHERAPY;
D O I
10.1118/1.4898591
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Peripheral dose in radiotherapy treatments represents a potential source of secondary neoplasic processes. As in the last few years, there has been a fast-growing concern on neutron collateral effects, this work focuses on this component. A previous established methodology to estimate peripheral neutron equivalent doses relied on passive (TLD, CR39) neutron detectors exposed in-phantom, in parallel to an active [static random access memory (SRAMnd)] thermal neutron detector exposed ex-phantom. A newly miniaturized, quick, and reliable active thermal neutron detector (TNRD, Thermal Neutron Rate Detector) was validated for both procedures. This first miniaturized active system eliminates the long postprocessing, required for passive detectors, giving thermal neutron fluences in real time. Methods: To validate TNRD for the established methodology, intrinsic characteristics, characterization of 4 facilities [to correlate monitor value (MU) with risk], and a cohort of 200 real patients (for second cancer risk estimates) were evaluated and compared with the well-established SRAMnd device. Finally, TNRD was compared to TLD pairs for 3 generic radiotherapy treatments through 16 strategic points inside an anthropomorphic phantom. Results: The performed tests indicate similar linear dependence with dose for both detectors, TNRD and SRAMnd, while a slightly better reproducibility has been obtained for TNRD (1.7% vs 2.2%). Risk estimates when delivering 1000 MU are in good agreement between both detectors (mean deviation of TNRD measurements with respect to the ones of SRAMnd is 0.07 cases per 1000, with differences always smaller than 0.08 cases per 1000). As far as the in-phantom measurements are concerned, a mean deviation smaller than 1.7% was obtained. Conclusions: The results obtained indicate that direct evaluation of equivalent dose estimation in organs, both in phantom and patients, is perfectly feasible with this new detector. This will open the door to an easy implementation of specific peripheral neutron dose models for any type of treatment and facility. (C) 2014 American Association of Physicists in Medicine.
引用
收藏
页数:5
相关论文
共 9 条
[1]   A NEWACTIVE THERMAL NEUTRON DETECTOR [J].
Bedogni, R. ;
Bortot, D. ;
Pola, A. ;
Introini, M. V. ;
Gentile, A. ;
Esposito, A. ;
Gomez-Ros, J. M. ;
Palomba, M. ;
Grossi, A. .
RADIATION PROTECTION DOSIMETRY, 2014, 161 (1-4) :241-244
[2]  
Exposito M. R., 2012, RADIOTHER ONCOL, V103, pS516
[3]   Neutron contamination in radiotherapy: Estimation of second cancers based on measurements in 1377 patients [J].
Exposito, Maite R. ;
Sanchez-Nieto, Beatriz ;
Terron, Jose A. ;
Domingo, Carles ;
Gomez, Faustino ;
Sanchez-Doblado, Francisco .
RADIOTHERAPY AND ONCOLOGY, 2013, 107 (02) :234-241
[4]   A new active method for the measurement of slow-neutron fluence in modern radiotherapy treatment rooms [J].
Gomez, F. ;
Iglesias, A. ;
Sanchez Doblado, F. .
PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (04) :1025-1039
[5]   Neutron measurements with ultra-thin 3D silicon sensors in a radiotherapy treatment room using a Siemens PRIMUS linac [J].
Guardiola, C. ;
Gomez, F. ;
Fleta, C. ;
Rodriguez, J. ;
Quirion, D. ;
Pellegrini, G. ;
Lousa, A. ;
Martinez-de-Olcoz, L. ;
Pombar, M. ;
Lozano, M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (10) :3227-3242
[6]  
Jimenez-Ortega Elisa, 2011, Proceedings of the 2011 12th European Conference on Radiation and Its Effects on Components and Systems (RADECS), P922, DOI 10.1109/RADECS.2011.6131330
[7]   Estimation of neutron-equivalent dose in organs of patients undergoing radiotherapy by the use of a novel online digital detector [J].
Sanchez-Doblado, F. ;
Domingo, C. ;
Gomez, F. ;
Sanchez-Nieto, B. ;
Muniz, J. L. ;
Garcia-Fuste, M. J. ;
Exposito, M. R. ;
Barquero, R. ;
Hartmann, G. ;
Terron, J. A. ;
Pena, J. ;
Mendez, R. ;
Gutierrez, F. ;
Guerre, F. X. ;
Rosello, J. ;
Nunez, L. ;
Brualla-Gonzalez, L. ;
Manchado, F. ;
Lorente, A. ;
Gallego, E. ;
Capote, R. ;
Planes, D. ;
Lagares, J. I. ;
Gonzalez-Soto, X. ;
Sansaloni, F. ;
Colmenares, R. ;
Amgarou, K. ;
Morales, E. ;
Bedogni, R. ;
Cano, J. P. ;
Fernandez, F. .
PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (19) :6167-6191
[8]  
Terron J. A., 2014, RADIOTHER ONCOL, V111, P564
[9]   A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction [J].
Xu, X. George ;
Bednarz, Bryan ;
Paganetti, Harald .
PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (13) :R193-R241