The Fibonacci Sequence and Schreier-Zeckendorf Sets

被引:0
作者
Chu, Hung Viet [1 ]
机构
[1] Univ Illinois, Dept Math, Champaign, IL 61820 USA
关键词
Fibonacci sequence; linear recurrence; combinatorics; Schreier set;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A finite subset of the natural numbers is weak-Schreier if min S >= vertical bar S vertical bar, strong-Schreier if min S > vertical bar S vertical bar, and maximal if min S = vertical bar S vertical bar. Let M-n be the number of weak-Schreier sets with n being the largest element and (F-n)(n) >=-1 denote the Fibonacci sequence. A finite set is said to be Zeckcndorf if it does not contain two consecutive natural numbers. Let E-n be the number of Zeckendorf subsets of {1, 2, ..., n}. It is well-known that E-n = Fn+2. In this paper, we first show four other ways to generate the Fibonacci sequence from counting Schreier sets. For example, let C-n be the number of weak-Schreier subsets of {1,2, ..., n}. Then C-n = Fn+2. To understand why C-n = E-n, we provide a bijective mapping to prove the equality directly. Next, we prove linear recurrence relations among the number of Schreier-Zeckendorf sets. Lastly, we discover the Fibonacci sequence by counting the number of subsets of {1,2, ..., n} such that two consecutive elements in increasing order always differ by an odd number.
引用
收藏
页数:12
相关论文
共 12 条
[1]  
[Anonymous], 1972, BULL SOC R SCI LIEGE
[2]  
Beckwith O, 2013, FIBONACCI QUART, V51, P13
[3]  
Best A, 2014, FIBONACCI QUART, V52, P35
[4]   Canonical Diophantine representations of natural numbers with respect to quadratic "bases" [J].
Burger, Edward B. ;
Clyde, David C. ;
Colbert, Cory H. ;
Shin, Gea Hyun ;
Wang, Zhaoning .
JOURNAL OF NUMBER THEORY, 2013, 133 (04) :1372-1388
[5]   Generalizing Zeckendorf's Theorem to f-decompositions [J].
Demontigny, Philippe ;
Do, Thao ;
Kulkarni, Archit ;
Miller, Steven J. ;
Moon, David ;
Varma, Umang .
JOURNAL OF NUMBER THEORY, 2014, 141 :136-158
[6]  
Keller T. J., 1972, The Fibonacci Quarterly, V10.1, P95
[7]  
Kologlu M, 2011, FIBONACCI QUART, V49, P116
[8]  
Lekkerkerker C.G., 1952, Simon Stevin, V29, P190
[9]  
Lucas E., 1891, THEORIE DES NOMBRES
[10]  
Ostrowski Alexander, 1922, ABH MATH SEM HAMBURG, P77