Global optimality conditions for nonlinear programming problems with bounds via quadratic underestimators

被引:0
作者
Jeyakumar, V. [1 ]
Huy, N. Q. [2 ]
机构
[1] Univ New S Wales, Dept Appl Math, Sydney, NSW 2052, Australia
[2] Hanoi Pedag Univ, Dept Math, Vinh Phuc, Vietnam
基金
澳大利亚研究理事会;
关键词
smooth nonlinear programming problems; global optimization; optimality conditions; box constraints; discrete constraints; MINIMIZATION PROBLEMS; INEQUALITY CONSTRAINTS;
D O I
10.1080/02331930801951199
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article we develop conditions for feasible points to be global minimizers of nonlinear programming problems with bounds on the variables. We obtain sufficient conditions for global optimality, first by constructing quadratic underestimators of the objective function and then by deriving conditions for global minimizers of underestimators. We also apply this method to optimization problems with discrete variables and obtain global optimality conditions for nonlinear programming problems with discrete variables. Numerical examples are discussed to illustrate the optimality conditions.
引用
收藏
页码:161 / 173
页数:13
相关论文
共 13 条
[1]   Global optimality conditions for quadratic optimization problems with binary constraints [J].
Beck, A ;
Teboulle, M .
SIAM JOURNAL ON OPTIMIZATION, 2000, 11 (01) :179-188
[2]  
BENTAL A, 2000, LECT MOD CONV OPT AN
[3]  
Floudas C.A., 2000, Optimization in computational chemistry and molecular biology: local and global approaches
[4]  
Floudas Christodoulos A, 1995, Nonconvex Optimization and Its Applications, P217
[5]   Conditions for global optimality 2 [J].
Hiriart-Urruty, JB .
JOURNAL OF GLOBAL OPTIMIZATION, 1998, 13 (04) :349-367
[6]  
Hiriart-Urruty JB, 2001, J GLOBAL OPTIM, V21, P445
[7]   Sufficient global optimality conditions for multi-extremal smooth minimisation problems with bounds and linear matrix inequality constraints [J].
Huy, N. Q. ;
Jeyakumar, V. ;
Lee, G. M. .
ANZIAM JOURNAL, 2006, 47 :439-450
[8]   Non-convex quadratic minimization problems with quadratic constraints: global optimality conditions [J].
Jeyakumar, V. ;
Rubinov, A. M. ;
Wu, Z. Y. .
MATHEMATICAL PROGRAMMING, 2007, 110 (03) :521-541
[9]   Sufficient global optimality conditions for non-convex quadratic minimization problems with box constraints [J].
Jeyakumar, V. ;
Rubinov, A. M. ;
Wu, Z. Y. .
JOURNAL OF GLOBAL OPTIMIZATION, 2006, 36 (03) :471-481
[10]   Conditions for global optimality of quadratic minimization problems with lmi constraints [J].
Jeyakumar, Vaithilingam ;
Wu, Zhiyou .
ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2007, 24 (02) :149-160