Structure, Electronic Structure and Defect Formation Energies of LixCo1-yNiyO2 as a Function of x (0<x<1) and y (y=0, 0.5, 1)

被引:4
作者
Laubach, Sonja [1 ]
Laubach, Stefan [1 ]
Schmidt, Peter C. [1 ]
Groeting, Melanie [2 ]
Albe, Karsten [2 ]
Jaegermann, Wolfram [3 ]
Wolf, Walter [4 ]
机构
[1] Tech Univ Darmstadt, Eduard Zintl Inst Anorgan & Phys Chem, D-64287 Darmstadt, Germany
[2] Tech Univ Darmstadt, Fachbereich Mat & Geowissensch, D-64287 Darmstadt, Germany
[3] Tech Univ Darmstadt, Fachbereich Mat & Geowissensch, Fachgebiet Oberflachenforsch, D-64287 Darmstadt, Germany
[4] Mat Design, F-75000 Le Mans, France
来源
ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS | 2009年 / 223卷 / 10-11期
关键词
Defect Formation Energies; Electronic Structure; Cobalt; Lithium; Nickel; INITIO MOLECULAR-DYNAMICS; AB-INITIO; 1ST-PRINCIPLES PREDICTION; LITHIUM INTERCALATION; BATTERY VOLTAGES; RAY-DIFFRACTION; LICOO2; TRANSITION; LINIO2; COO2;
D O I
10.1524/zpch.2009.6082
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LixCoO2 and LixNiO2 (0.5<x<1) are prototype cathode materials in lithium ion batteries. Both systems show degradation and fatigue during electrochemical cycling. We have performed band structure calculations based on density-functional theory for a series of compounds Li-x(Co,Ni)O-2 (0<x<1). The distribution Of the transition metals (TM) cobalt and nickel on TM sites as well as the electronic structure of these compounds is investigated with focus on the change of oxidation states of cobalt, nickel and oxygen during lithium de-intercalation. We also study the total energy as a function Of the lithium content x, including the vibrational energy E-v and the formation energy of lithium vacancies E(V-Li). It is found that E-v is small compared to E(V-Li) and that E(V-Li) is increasing with increasing x for all systems.
引用
收藏
页码:1327 / 1340
页数:14
相关论文
共 47 条
[1]   CoO2, the end member of the LixCoO2 solid solution [J].
Amatucci, GG ;
Tarascon, JM ;
Klein, LC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (03) :1114-1123
[2]   Reversibility of LiNiO2 cathode [J].
Arai, H ;
Okada, S ;
Sakurai, Y ;
Yamaki, J .
SOLID STATE IONICS, 1997, 95 (3-4) :275-282
[3]   CHARACTERIZATION AND CATHODE PERFORMANCE OF LI-1-XNI1+XO2 PREPARED WITH THE EXCESS LITHIUM METHOD [J].
ARAI, H ;
OKADA, S ;
OHTSUKA, H ;
ICHIMURA, M ;
YAMAKI, J .
SOLID STATE IONICS, 1995, 80 (3-4) :261-269
[4]   Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides [J].
Aydinol, MK ;
Kohan, AF ;
Ceder, G ;
Cho, K ;
Joannopoulos, J .
PHYSICAL REVIEW B, 1997, 56 (03) :1354-1365
[5]  
Bader R. F. W., 1994, ATOMS MOL QUANTUM TH
[6]   Implementation of the projector augmented-wave LDA+U method:: Application to the electronic structure of NiO [J].
Bengone, O ;
Alouani, M ;
Blöchl, P ;
Hugel, J .
PHYSICAL REVIEW B, 2000, 62 (24) :16392-16401
[7]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[8]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[9]   BAND-THEORY DESCRIPTION OF HIGH-ENERGY SPECTROSCOPY AND THE ELECTRONIC-STRUCTURE OF LICOO2 [J].
CZYZYK, MT ;
POTZE, R ;
SAWATZKY, GA .
PHYSICAL REVIEW B, 1992, 46 (07) :3729-3735
[10]   Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS [J].
Daheron, L. ;
Dedryvere, R. ;
Martinez, H. ;
Menetrier, M. ;
Denage, C. ;
Delmas, C. ;
Gonbeau, D. .
CHEMISTRY OF MATERIALS, 2008, 20 (02) :583-590