Two-dimensional Kaiser apodization function for interferometric radiometry from space

被引:0
作者
da Conceicao Proenca, Maria [1 ]
Duarte, Elena [1 ]
Rebordao, Jose Manuel [1 ]
机构
[1] INETI Natl Inst Engn Technol & Innovat, LAER Aerosp Lab, P-1649038 Lisbon, Portugal
关键词
Kaiser function; interferometric radiometry; strip adaptive process; apodization; soil moisture and ocean salinity (SMOS); microwave imaging radiometer by aperture synthesis (MIRAS);
D O I
10.1117/1.2713801
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In radiometric interferometry from space [e.g., European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) mission, Microwave Imaging Radiometer by Aperture Synthesis (MIRAS) interferometer], apodization or tapering functions can be used to ensure that ground resolution elements (synthetic antenna footprints) have equal area and shape. If resolution can be made uniform, subsequent processing - which relies on multiangular processing of the information from the same point of the Earth but seen from different directions, from snapshot to snapshot - is less prone to errors. This is called strip adaptive processing. We describe how to use two-dimensional (2D) Kaiser apodization functions to achieve the strip adaptive process and describe its relation to conventional Blackman nonadaptive apodization. In particular, we show how to compute the Kaiser parameters from sampling specifications within the complete field of view (FOV) of the instrument. This is achieved by setting up suitable regressions between a Kaiser parameters-dependent function, the array function half width at half maximum (HWHM), and the nominal elliptical footprints' area and eccentricity. The performance of the suggested methodology is compared to the baseline, based on nonadaptive Blackman apodization. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
引用
收藏
页数:8
相关论文
共 9 条
[1]  
ANTERRIEU A, 2002, IEEE T GEOSCI REMOTE, V40, P1
[2]   The processing of hexagonally sampled signals with standard rectangular techniques: Application to 2-D large aperture synthesis interferometric radiometers [J].
Camps, A ;
Bara, J ;
Sanahuja, IC ;
Torres, F .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (01) :183-190
[3]   Radiometric sensitivity computation in aperture synthesis interferometric radiometry [J].
Camps, A ;
Corbella, I ;
Bara, J ;
Torres, F .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (02) :680-685
[4]  
Camps Carmona A. J., 1996, Application of Interferometric Radiometry to Earth Observation
[5]   The visibility function in interferometric aperture synthesis radiometry [J].
Corbella, I ;
Duffo, N ;
Vall-Ilossera, N ;
Camps, A ;
Torres, F .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (08) :1677-1682
[6]   The determination of surface salinity with the European SMOS space mission [J].
Font, J ;
Lagerloef, GSE ;
Le Vine, DM ;
Camps, A ;
Zanifé, OZ .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (10) :2196-2205
[7]  
Goodman J., 2000, Statistical Optics
[8]   Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission [J].
Kerr, YH ;
Waldteufel, P ;
Wigneron, JP ;
Martinuzzi, JM ;
Font, J ;
Berger, M .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (08) :1729-1735
[9]  
LYNN PA, 1990, INTRO DIGITAL SIGNAL