Properties of the Steiner Triple Systems of Order 19

被引:0
作者
Colbourn, Charles J. [1 ]
Forbes, Anthony D. [2 ]
Grannell, Mike J. [2 ]
Griggs, Terry S. [2 ]
Kaski, Petteri [3 ]
Ostergard, Patric R. J. [4 ]
Pike, David A. [5 ]
Pottonen, Olli [4 ]
机构
[1] Arizona State Univ, Sch Comp Informat & Decis Syst Engn, Tempe, AZ 85287 USA
[2] Open Univ, Dept Math & Stat, Milton Keynes MK7 6AA, Bucks, England
[3] Univ Helsinki, Helsinki Inst Informat Technol, Dept Comp Sci, FIN-00014 Helsinki, Finland
[4] Aalto Univ, Dept Commun & Networking, Aalto 00076, Finland
[5] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
芬兰科学院; 加拿大自然科学与工程研究理事会;
关键词
automorphism; chromatic index; chromatic number; configuration; cycle structure; existential closure; independent set; partial parallel class; rank; Steiner triple system of order 19; STS(19);
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Properties of the 11 084 874 829 Steiner triple systems of order 19 are examined. In particular, there is exactly one 5-sparse, but no 6-sparse, STS(19); there is exactly one uniform STS(19); there are exactly two STS(19) with no almost parallel classes; all STS(19) have chromatic number 3; all have chromatic index 10, except for 4 075 designs with chromatic index 11 and two with chromatic index 12; all are 3-resolvable; and there are exactly two 3-existentially closed STS(19).
引用
收藏
页数:30
相关论文
共 44 条
[1]  
[Anonymous], C NUMER
[2]  
[Anonymous], 2000, Millennial Perspectives in Computer Science
[3]  
BAYS S, 1923, ANN SCI ECOLE NORM S, V40, P55
[4]  
Colbourn C.J., 1999, OX MATH M
[5]  
Colbourn C. J., 2007, Handbook of combinatorial designs, P58
[6]  
Colbourn C.J., 1992, Contemporary Design Theory. A Collection of Surveys, P401
[7]   COMPUTING THE CHROMATIC INDEX OF STEINER TRIPLE-SYSTEMS [J].
COLBOURN, CJ .
COMPUTER JOURNAL, 1982, 25 (03) :338-339
[8]   ANTI-MITRE STEINER TRIPLE-SYSTEMS [J].
COLBOURN, CJ ;
MENDELSOHN, E ;
ROSA, A ;
SIRAN, J .
GRAPHS AND COMBINATORICS, 1994, 10 (03) :215-224
[9]   STEINER TRIPLE-SYSTEMS OF ORDER-19 WITH NONTRIVIAL AUTOMORPHISM GROUP [J].
COLBOURN, CJ ;
MAGLIVERAS, SS ;
STINSON, DR .
MATHEMATICS OF COMPUTATION, 1992, 59 (199) :283-&
[10]  
COLBOURN CJ, 1992, MATH COMPUT, V59, pS25