Stable periodic orbits for a predator-prey model with delay

被引:18
作者
Cavani, M [1 ]
Lizana, M
Smith, HL
机构
[1] Univ Oriente, Dept Math Nucleo Sucre, Cumana, Venezuela
[2] Univ Los Andes, Fac Sci, Dept Math, Merida 5101, Venezuela
[3] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
关键词
predator-prey model; stable periodic orbit; delay; uniform persistence;
D O I
10.1006/jmaa.2000.6802
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a predator-prey model with time lag which improves upon that proposed by Cavani and Farkas [1994, Acta Math. Hungar. 63(3), 213-229]. We show that when the model has exactly one non-trivial unstable and hyperbolic equilibrium there exists a stable periodic orbit, (C) 2000 Academic Press.
引用
收藏
页码:324 / 339
页数:16
相关论文
共 9 条
[1]  
[Anonymous], 1977, LECT NOTES BIOMATHEM
[2]   BIFURCATIONS IN A PREDATOR-PREY MODEL WITH MEMORY AND DIFFUSION .2. TURING BIFURCATION [J].
CAVANI, M ;
FARKAS, M .
ACTA MATHEMATICA HUNGARICA, 1994, 63 (04) :375-393
[3]  
CAVANI M, 1994, ACTA MATH HUNG, V63, P113
[4]   CONTRIBUTION TO THE THEORY OF COMPETING PREDATORS [J].
HSU, SB ;
HUBBELL, SP ;
WALTMAN, P .
ECOLOGICAL MONOGRAPHS, 1978, 48 (03) :337-349
[5]  
LIZANA M, 1997, ACTA MATH HUNG, V77, P155
[6]   TIME-DELAY IN PREY-PREDATOR MODELS .2. BIFURCATION THEORY [J].
MACDONALD, N .
MATHEMATICAL BIOSCIENCES, 1977, 33 (3-4) :227-234
[7]  
SMITH HL, 1995, T AM MATH SOC, V41
[9]   STABLE PERIODIC-ORBITS FOR A CLASS OF 3-DIMENSIONAL COMPETITIVE-SYSTEMS [J].
ZHU, HR ;
SMITH, HL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 110 (01) :143-156