Strong solutions for the nonhomogeneous Navier-Stokes equations in unbounded domains

被引:6
作者
Braz e Silva, P. [1 ]
Rojas-Medar, M. A. [2 ]
Villamizar-Roa, E. J. [3 ]
机构
[1] Univ Fed Pernambuco, Dept Matemat, BR-50740540 Recife, PE, Brazil
[2] Univ Bio Bio, Dept Ciencias Basicas, Chillan, Chile
[3] Univ Nacl Colombia, Escuela Matemat, Medellin 3840, Colombia
关键词
Stokes and Navier-Stokes equations; existence; uniqueness; regularity theory; VISCOUS INCOMPRESSIBLE FLUIDS; BOUNDARY-VALUE PROBLEM; EXISTENCE; REGULARITY; UNIQUENESS; DENSITY;
D O I
10.1002/mma.1178
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the existence of strong solutions for the nonhomogeneous Navier-Stokes equations in three-dimensional domains with boundary uniformly of class C-3. Under suitable assumptions, uniqueness is also proved. Copyright (c) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:358 / 372
页数:15
相关论文
共 29 条
[11]   Strong solutions and weak-strong uniqueness for the nonhomogeneous Navier-Stokes system [J].
Germain, Pierre .
JOURNAL D ANALYSE MATHEMATIQUE, 2008, 105 (1) :169-196
[13]   FINITE-ELEMENT APPROXIMATION OF THE NONSTATIONARY NAVIER-STOKES PROBLEM .1. REGULARITY OF SOLUTIONS AND 2ND-ORDER ERROR-ESTIMATES FOR SPATIAL DISCRETIZATION [J].
HEYWOOD, JG ;
RANNACHER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :275-311
[14]  
Itoh S., 1999, Tokyo J. Math, V22, P17, DOI [10.3836/tjm/1270041610, DOI 10.3836/TJM/1270041610]
[15]  
KAZHIKHO.AV, 1974, DOKL AKAD NAUK SSSR+, V216, P1008
[17]  
LADYZHENSKAYA OA, 1975, BOUND VALUE PROBL, V52, P52
[18]  
LIONS J. -L., 1977, PUBL MATH RES CTR U, V40, P59
[19]  
Lions J.L., 1997, North-Holland Math. Stud., V30, P284
[20]  
Lions P.-L., 1996, Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models, V2