Strong solutions for the nonhomogeneous Navier-Stokes equations in unbounded domains

被引:6
作者
Braz e Silva, P. [1 ]
Rojas-Medar, M. A. [2 ]
Villamizar-Roa, E. J. [3 ]
机构
[1] Univ Fed Pernambuco, Dept Matemat, BR-50740540 Recife, PE, Brazil
[2] Univ Bio Bio, Dept Ciencias Basicas, Chillan, Chile
[3] Univ Nacl Colombia, Escuela Matemat, Medellin 3840, Colombia
关键词
Stokes and Navier-Stokes equations; existence; uniqueness; regularity theory; VISCOUS INCOMPRESSIBLE FLUIDS; BOUNDARY-VALUE PROBLEM; EXISTENCE; REGULARITY; UNIQUENESS; DENSITY;
D O I
10.1002/mma.1178
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the existence of strong solutions for the nonhomogeneous Navier-Stokes equations in three-dimensional domains with boundary uniformly of class C-3. Under suitable assumptions, uniqueness is also proved. Copyright (c) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:358 / 372
页数:15
相关论文
共 29 条
[1]   Global existence for an nonhomogeneous fluid [J].
Abidi, Hammadi ;
Paicu, Marius .
ANNALES DE L INSTITUT FOURIER, 2007, 57 (03) :883-917
[2]  
Adams R.A., 1975, Sobolev Spaces. Adams. Pure and applied mathematics
[3]   The Stokes problem in Rn:: An approach in weighted Sobolev spaces [J].
Alliot, F ;
Amrouche, C .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (05) :723-754
[4]  
AMROUCHE C, 1991, P JAPAN ACAD A, V67, P71
[5]  
[Anonymous], 1994, Springer Tracts in Natural Philosophy
[6]  
[Anonymous], 1969, Mathematics and Its Applications
[7]  
Antontsev S.N., 1990, STUDIES MATH ITS APP, V22
[8]  
Boldrini J. L., 1992, MAT CONT, V3, P1
[9]  
Boldrini J.L., 1997, NUMERICAL METHODS ME, V371
[10]  
FERNANDEZCARA E, 1992, COMMUN PART DIFF EQ, V17, P1253