Multimodal sensor-based whole-body control for human-robot collaboration in industrial settings

被引:48
作者
Fernandez, Jose de Gea [1 ]
Mronga, Dennis [1 ]
Guenther, Martin [1 ]
Knobloch, Tobias [4 ]
Wirkus, Malte [1 ]
Schroeer, Martin [2 ]
Trampler, Mathias [1 ]
Stiene, Stefan [1 ]
Kirchner, Elsa [1 ,2 ]
Bargsten, Vinzenz [2 ]
Baenziger, Timo [3 ]
Teiwes, Johannes [3 ]
Krueger, Thomas [3 ]
Kirchner, Frank [1 ,2 ]
机构
[1] German Res Ctr Artificial Intelligence DFKI, Robot Innovat Ctr, Robert Hooke Str 1, D-28359 Bremen, Germany
[2] Univ Bremen, Robot Grp, Robert Hooke Str 1, D-28359 Bremen, Germany
[3] Volkswagen AG, Berliner Ring 2, D-38436 Wolfsburg, Germany
[4] Hsch Aschaffenburg, Wurzburger Str 45, D-63743 Aschaffenburg, Germany
关键词
Whole-body control; Human-robot collaboration; Intuitive interfaces; Gesture recognition; Collision avoidance; Modular software;
D O I
10.1016/j.robot.2017.04.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes the development of a dual-arm robotic system for industrial human robot collaboration. The robot demonstrator described here possesses multiple sensor modalities for the monitoring of the shared human robot workspace and is equipped with the ability for real-time collision-free dual arm manipulation. A whole-body control framework is used as a key control element which generates a coherent output signal for the robot's joints given the multiple controller inputs, tasks' priorities, physical constraints, and current situation. Furthermore, sets of controller-constraints combinations of the whole body controller constitute the basic building blocks that describe actions of a high-level action plan to be sequentially executed. In addition, the robotic system can be controlled in an intuitive manner via human gestures. These individual robotic capabilities are combined into an industrial demonstrator which is validated in a gearbox assembly station of a Volkswagen factory. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 119
页数:18
相关论文
共 50 条
[41]   Human-Robot Collaboration Based on Motion Intention Estimation [J].
Li, Yanan ;
Ge, Shuzhi Sam .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2014, 19 (03) :1007-1014
[42]   Skeleton-Based Action and Gesture Recognition for Human-Robot Collaboration [J].
Terreran, Matteo ;
Lazzaretto, Margherita ;
Ghidoni, Stefano .
INTELLIGENT AUTONOMOUS SYSTEMS 17, IAS-17, 2023, 577 :29-45
[43]   Review of vision-based safety systems for human-robot collaboration [J].
Halme, Roni-Jussi ;
Lanz, Minna ;
Kamarainen, Joni ;
Pieters, Roel ;
Latokartano, Jyrki ;
Hietanen, Antti .
51ST CIRP CONFERENCE ON MANUFACTURING SYSTEMS, 2018, 72 :111-116
[44]   Ultrasound Based Object Detection for Human-Robot Collaboration [J].
Glowa, Christoph ;
Schlegl, Thomas .
INTELLIGENT ROBOTICS AND APPLICATIONS, PT II, 2013, 8103 :84-95
[45]   Enhanced Human-Robot Collaboration through AI Tools and Collision Avoidance Control [J].
Forlini, Matteo ;
Neri, Federico ;
Carbonari, Luca ;
Callegari, Massimo ;
Palmieri, Giacomo .
2024 20TH IEEE/ASME INTERNATIONAL CONFERENCE ON MECHATRONIC AND EMBEDDED SYSTEMS AND APPLICATIONS, MESA 2024, 2024,
[46]   A robotic manipulation framework for industrial human-robot collaboration based on continual knowledge graph embedding [J].
Feng, Bohan ;
Juan, Xinzhe ;
Gao, Xinyi ;
Zhou, Qi ;
Bi, Youyi .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 134 (11-12) :5431-5447
[47]   Real-Time Control of a Humanoid Robot for Whole-Body Tactile Interaction [J].
Armleder, Simon ;
Bergner, Florian ;
Guadarrama-Olvera, Julio Rogelio ;
Nakanishi, Jun ;
Cheng, Gordon .
ADVANCED INTELLIGENT SYSTEMS, 2025,
[48]   Dynamic Adaptability in Human-Robot Collaboration for Industrial Assembly: A Behaviour Tree Based Task Execution [J].
Akkaladevi, Sharath Chandra ;
Propst, Matthias ;
Deshpande, Kapil ;
Hofmann, Michael ;
Pichler, Andreas ;
Sapoutzoglou, Panagiotis ;
Zacharia, Athena ;
Kalogeras, Dimitrios ;
Pateraki, Maria .
FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING: MANUFACTURING INNOVATION AND PREPAREDNESS FOR THE CHANGING WORLD ORDER, FAIM 2024, VOL 1, 2024, :305-312
[49]   Performance guaranteed human-robot collaboration with POMDP supervisory control [J].
Zhang, Xiaobin ;
Lin, Hai .
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2019, 57 :59-72
[50]   Force tracking control for motion synchronization in human-robot collaboration [J].
Li, Yanan ;
Ge, Shuzhi Sam .
ROBOTICA, 2016, 34 (06) :1260-1281