Multimodal sensor-based whole-body control for human-robot collaboration in industrial settings

被引:46
作者
Fernandez, Jose de Gea [1 ]
Mronga, Dennis [1 ]
Guenther, Martin [1 ]
Knobloch, Tobias [4 ]
Wirkus, Malte [1 ]
Schroeer, Martin [2 ]
Trampler, Mathias [1 ]
Stiene, Stefan [1 ]
Kirchner, Elsa [1 ,2 ]
Bargsten, Vinzenz [2 ]
Baenziger, Timo [3 ]
Teiwes, Johannes [3 ]
Krueger, Thomas [3 ]
Kirchner, Frank [1 ,2 ]
机构
[1] German Res Ctr Artificial Intelligence DFKI, Robot Innovat Ctr, Robert Hooke Str 1, D-28359 Bremen, Germany
[2] Univ Bremen, Robot Grp, Robert Hooke Str 1, D-28359 Bremen, Germany
[3] Volkswagen AG, Berliner Ring 2, D-38436 Wolfsburg, Germany
[4] Hsch Aschaffenburg, Wurzburger Str 45, D-63743 Aschaffenburg, Germany
关键词
Whole-body control; Human-robot collaboration; Intuitive interfaces; Gesture recognition; Collision avoidance; Modular software;
D O I
10.1016/j.robot.2017.04.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes the development of a dual-arm robotic system for industrial human robot collaboration. The robot demonstrator described here possesses multiple sensor modalities for the monitoring of the shared human robot workspace and is equipped with the ability for real-time collision-free dual arm manipulation. A whole-body control framework is used as a key control element which generates a coherent output signal for the robot's joints given the multiple controller inputs, tasks' priorities, physical constraints, and current situation. Furthermore, sets of controller-constraints combinations of the whole body controller constitute the basic building blocks that describe actions of a high-level action plan to be sequentially executed. In addition, the robotic system can be controlled in an intuitive manner via human gestures. These individual robotic capabilities are combined into an industrial demonstrator which is validated in a gearbox assembly station of a Volkswagen factory. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 119
页数:18
相关论文
共 50 条
[31]   Promoting Trust in Industrial Human-Robot Collaboration Through Preference-Based Optimization [J].
Campagna, Giulio ;
Lagomarsino, Marta ;
Lorenzini, Marta ;
Chrysostomou, Dimitrios ;
Rehm, Matthias ;
Ajoudani, Arash .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (11) :9255-9262
[32]   Semantic-Based Loco-Manipulation for Human-Robot Collaboration in Industrial Environments [J].
Rollo, Federico ;
Raiola, Gennaro ;
Tsagarakis, Nikolaos ;
Roveri, Marco ;
Hoffman, Enrico Mingo ;
Ajoudani, Arash .
EUROPEAN ROBOTICS FORUM 2024, ERF, VOL 2, 2024, 33 :55-59
[33]   Behavior Tree Based Robotic Skill Execution for Human Robot Collaboration in Industrial Settings [J].
Akkaladevi, Sharath Chandra ;
Propst, Matthias ;
Deshpande, Kapil ;
Hofmann, Michael ;
Pichler, Andreas .
EUROPEAN ROBOTICS FORUM 2024, ERF, VOL 2, 2024, 33 :76-80
[34]   Range-Sensor-Based Semiautonomous Whole-Body Collision Avoidance of a Snake Robot [J].
Tanaka, Motoyasu ;
Kon, Kazuyuki ;
Tanaka, Kazuo .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2015, 23 (05) :1927-1934
[35]   Optimization-Based Whole-Body Control of a Series Elastic Humanoid Robot [J].
Hopkins, Michael A. ;
Leonessa, Alexander ;
Lattimer, Brian Y. ;
Hong, Dennis W. .
INTERNATIONAL JOURNAL OF HUMANOID ROBOTICS, 2016, 13 (01)
[36]   Working Together: A Review on Safe Human-Robot Collaboration in Industrial Environments [J].
Robla-Gomez, S. ;
Becerra, Victor M. ;
Llata, J. R. ;
Gonzalez-Sarabia, E. ;
Torre-Ferrero, C. ;
Perez-Oria, J. .
IEEE ACCESS, 2017, 5 :26754-26773
[37]   A Resilient and Effective Task Scheduling Approach for Industrial Human-Robot Collaboration [J].
Pupa, Andrea ;
Van Dijk, Wietse ;
Brekelmans, Christiaan ;
Secchi, Cristian .
SENSORS, 2022, 22 (13)
[38]   Fast and Automatic Object Registration for Human-Robot Collaboration in Industrial Manufacturing [J].
Geiss, Manuela ;
Baresch, Martin ;
Chasparis, Georgios ;
Schweiger, Edwin ;
Teringl, Nico ;
Zwick, Michael .
DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2022 WORKSHOPS, 2022, 1633 :232-242
[39]   Ergonomically optimized path-planning for industrial human-robot collaboration [J].
Nejadasl, Atieh Merikh ;
Achaoui, Jihad ;
El Makrini, Ilias ;
van de Perre, Greet ;
Verstraten, Tom ;
Vanderborght, Bram .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2024, 43 (12) :1884-1897
[40]   Abnormal behavior monitoring based method for safe human-robot collaboration [J].
Zhu D. ;
Li Z. ;
Wu Z. .
Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (12) :3737-3746