Multimodal sensor-based whole-body control for human-robot collaboration in industrial settings

被引:44
作者
Fernandez, Jose de Gea [1 ]
Mronga, Dennis [1 ]
Guenther, Martin [1 ]
Knobloch, Tobias [4 ]
Wirkus, Malte [1 ]
Schroeer, Martin [2 ]
Trampler, Mathias [1 ]
Stiene, Stefan [1 ]
Kirchner, Elsa [1 ,2 ]
Bargsten, Vinzenz [2 ]
Baenziger, Timo [3 ]
Teiwes, Johannes [3 ]
Krueger, Thomas [3 ]
Kirchner, Frank [1 ,2 ]
机构
[1] German Res Ctr Artificial Intelligence DFKI, Robot Innovat Ctr, Robert Hooke Str 1, D-28359 Bremen, Germany
[2] Univ Bremen, Robot Grp, Robert Hooke Str 1, D-28359 Bremen, Germany
[3] Volkswagen AG, Berliner Ring 2, D-38436 Wolfsburg, Germany
[4] Hsch Aschaffenburg, Wurzburger Str 45, D-63743 Aschaffenburg, Germany
关键词
Whole-body control; Human-robot collaboration; Intuitive interfaces; Gesture recognition; Collision avoidance; Modular software;
D O I
10.1016/j.robot.2017.04.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes the development of a dual-arm robotic system for industrial human robot collaboration. The robot demonstrator described here possesses multiple sensor modalities for the monitoring of the shared human robot workspace and is equipped with the ability for real-time collision-free dual arm manipulation. A whole-body control framework is used as a key control element which generates a coherent output signal for the robot's joints given the multiple controller inputs, tasks' priorities, physical constraints, and current situation. Furthermore, sets of controller-constraints combinations of the whole body controller constitute the basic building blocks that describe actions of a high-level action plan to be sequentially executed. In addition, the robotic system can be controlled in an intuitive manner via human gestures. These individual robotic capabilities are combined into an industrial demonstrator which is validated in a gearbox assembly station of a Volkswagen factory. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 119
页数:18
相关论文
共 50 条
  • [21] An Optimal Human-Based Control Approach for Mobile Human-Robot Collaboration
    Pupa, PabloAndrea
    Breveglieri, Francesco
    Secchi, Cristian
    HUMAN-FRIENDLY ROBOTICS, HFR, 2022, 2023, 26 : 30 - 44
  • [22] Adaptive Human-Robot Collaboration Control Based on Optimal Admittance Parameters
    Yu X.
    Wu J.
    Xu C.
    Luo H.
    Ou L.
    Journal of Shanghai Jiaotong University (Science), 2022, 27 (05) : 589 - 601
  • [23] Human-Robot Collaboration Framework Based on Impedance Control in Robotic Assembly
    Zhao, Xingwei
    Chen, Yiming
    Qian, Lu
    Tao, Bo
    Ding, Han
    ENGINEERING, 2023, 30 : 83 - 92
  • [24] Human Comfort Index Estimation in Industrial Human-Robot Collaboration Task
    Savur, Celal
    Heard, Jamison
    Sahin, Ferat
    IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2025, 55 (02) : 246 - 255
  • [25] Virtual Reality Study of Human Adaptability in Industrial Human-Robot Collaboration
    Fratczak, Piotr
    Goh, Yee Mey
    Kinnell, Peter
    Justham, Laura
    Soltoggio, Andrea
    PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL CONFERENCE ON HUMAN-MACHINE SYSTEMS (ICHMS), 2020, : 94 - 99
  • [26] Power and force limiting on industrial robots for human-robot collaboration
    Aivaliotis, P.
    Aivaliotis, S.
    Gkournelos, C.
    Kokkalis, K.
    Michalos, G.
    Makris, S.
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2019, 59 : 346 - 360
  • [27] Dynamic risk assessment and active response strategy for industrial human-robot collaboration
    Liu, Zhihao
    Wang, Xinran
    Cai, Yijie
    Xu, Wenjun
    Liu, Quan
    Zhou, Zude
    Duc Truong Pham
    COMPUTERS & INDUSTRIAL ENGINEERING, 2020, 141 (141)
  • [28] The Development of a Scale to Evaluate Trust in Industrial Human-robot Collaboration
    Charalambous, George
    Fletcher, Sarah
    Webb, Philip
    INTERNATIONAL JOURNAL OF SOCIAL ROBOTICS, 2016, 8 (02) : 193 - 209
  • [29] The Development of a Scale to Evaluate Trust in Industrial Human-robot Collaboration
    George Charalambous
    Sarah Fletcher
    Philip Webb
    International Journal of Social Robotics, 2016, 8 : 193 - 209
  • [30] Promoting Trust in Industrial Human-Robot Collaboration Through Preference-Based Optimization
    Campagna, Giulio
    Lagomarsino, Marta
    Lorenzini, Marta
    Chrysostomou, Dimitrios
    Rehm, Matthias
    Ajoudani, Arash
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (11): : 9255 - 9262