Coupled microbial bloom and oxygenation decline recorded by magnetofossils during the Palaeocene-Eocene Thermal Maximum

被引:75
作者
Chang, Liao [1 ,2 ,3 ]
Harrison, Richard J. [4 ]
Zeng, Fan [1 ]
Berndt, Thomas A. [1 ]
Roberts, Andrew P. [5 ]
Heslop, David [5 ]
Zhao, Xiang [5 ]
机构
[1] Peking Univ, Sch Earth & Space Sci, Lab Orogen Belts & Crustal Evolut, Beijing 100871, Peoples R China
[2] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Geol, Qingdao 266071, Peoples R China
[3] Peking Univ, Inst Ocean Res, Beijing 100871, Peoples R China
[4] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England
[5] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 2601, Australia
基金
澳大利亚研究理事会; 美国国家科学基金会; 欧洲研究理事会; 中国国家自然科学基金;
关键词
ORGANIC-CARBON FLUX; MAGNETOTACTIC BACTERIA; PALAEOCEANOGRAPHIC CHANGES; MAGNETITE; OCEAN; PRODUCTIVITY; SEA; REVERSAL; SEDIMENTS; MAGNETIZATION;
D O I
10.1038/s41467-018-06472-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding marine environmental change and associated biological turnover across the Palaeocene-Eocene Thermal Maximum (PETM; -56 Ma)-the most pronounced Cenozoic short-term global warming event-is important because of the potential role of the ocean in atmospheric CO2 drawdown, yet proxies for tracing marine productivity and oxygenation across the PETM are limited and results remain controversial. Here we show that a high-resolution record of South Atlantic Ocean bottom water oxygenation can be extracted from exceptionally preserved magnetofossils-the bioinorganic magnetite nanocrystals produced by magnetotactic bacteria (MTB) using a new multiscale environmental magnetic approach. Our results suggest that a transient MTB bloom occurred due to increased nutrient supply. Bottom water oxygenation decreased gradually from the onset to the peak PETM. These observations provide a record of microbial response to the PETM and establish the value of magnetofossils as palaeoenvironmental indicators.
引用
收藏
页数:9
相关论文
共 72 条
[1]  
Abegg F., 2006, P OCEAN DRILLING PRO, V204, P1, DOI [DOI 10.2973/ODP.PROC.SR.208.202.2006, 10.2973/odp.proc.sr.208.206.2006, DOI 10.2973/ODP.PROC.SR.208.206.2006]
[2]   Rock magnetic record of the Triassic-Jurassic transition in pelagic bedded chert of the Inuyama section, Japan [J].
Abrajevitch, Alexandra ;
Hori, Rie S. ;
Kodama, Kazuto .
GEOLOGY, 2013, 41 (07) :803-806
[3]   Sudden spreading of corrosive bottom water during the Palaeocene-Eocene Thermal Maximum [J].
Alexander, Kaitlin ;
Meissner, Katrin J. ;
Bralower, Timothy J. .
NATURE GEOSCIENCE, 2015, 8 (06) :458-U57
[4]   Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback [J].
Bains, S ;
Norris, RD ;
Corfield, RM ;
Faul, KL .
NATURE, 2000, 407 (6801) :171-174
[5]   Magnetosome formation in prokaryotes [J].
Bazylinski, DA ;
Frankel, RB .
NATURE REVIEWS MICROBIOLOGY, 2004, 2 (03) :217-230
[6]   MICROAEROBIC CONDITIONS ARE REQUIRED FOR MAGNETITE FORMATION WITHIN AQUASPIRILLUM-MAGNETOTACTICUM [J].
BLAKEMORE, RP ;
SHORT, KA ;
BAZYLINSKI, DA ;
ROSENBLATT, C ;
FRANKEL, RB .
GEOMICROBIOLOGY JOURNAL, 1985, 4 (01) :53-71
[7]   Evidence of surface water oligotrophy during the Paleocene-Eocene thermal maximum: Nannofossil assemblage data from Ocean Drilling Program Site 690, Maud Rise, Weddell Sea [J].
Bralower, TJ .
PALEOCEANOGRAPHY, 2002, 17 (02) :13-1
[8]   THEORETICAL SINGLE-DOMAIN GRAIN-SIZE RANGE IN MAGNETITE AND TITANOMAGNETITE [J].
BUTLER, RF ;
BANERJEE, SK .
JOURNAL OF GEOPHYSICAL RESEARCH, 1975, 80 (29) :4049-4058
[9]   Discrimination of biogenic and detrital magnetite through a double Verwey transition temperature [J].
Chang, Liao ;
Heslop, David ;
Roberts, Andrew P. ;
Rey, Daniel ;
Mohamed, Kais J. .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2016, 121 (01) :3-14
[10]   Giant magnetofossils and hyperthermal events [J].
Chang, Liao ;
Roberts, Andrew P. ;
Williams, Wyn ;
Gerald, John D. Fitz ;
Larrasoana, Juan C. ;
Jovane, Luigi ;
Muxworthy, Adrian R. .
EARTH AND PLANETARY SCIENCE LETTERS, 2012, 351 :258-269