A duality between non-compact semisimple symmetric pairs and commutative compact semisimple symmetric triads and its general theory

被引:1
作者
Baba, Kurando [1 ]
Ikawa, Osamu [2 ]
Sasaki, Atsumu [3 ,4 ]
机构
[1] Tokyo Univ Sci, Fac Sci & Technol, Noda, Chiba 2788510, Japan
[2] Kyoto Inst Technol, Fac Arts & Sci, Sakyo Ku, Kyoto 6068585, Japan
[3] Tokai Univ, Fac Sci, Dept Math, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 2591292, Japan
[4] FAU Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
关键词
Involution; Non-compact symmetric pair; Commutative compact symmetric triad; Duality theorem; Irreducibility; Type K-epsilon symmetric pair; INVOLUTIONS; SPACES;
D O I
10.1016/j.difgeo.2021.101751
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper investigates a natural generalization of the duality between Riemannian symmetric pairs of compact type and those of non-compact type a la E. Cartan. The main result of this paper is to construct an explicit description of a one-to-one correspondence between non-compact pseudo-Riemannian semisimple symmetric pairs and commutative compact semisimple symmetric triads, which is called the duality theorem. Further, we develop a general theory of the duality theorem. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:42
相关论文
共 22 条
[1]  
[Anonymous], 2000, Progress in Math.
[2]  
Baba K, GEOMETRY ORBITS HERM
[3]  
Baba K, ALTERNATIVE PROOF BE
[4]  
Berger M., 1957, Ann. Sci. Ecole Norm. Sup., V74, P85, DOI 10.24033/asens.1054
[5]  
Conlon L, 1964, T AM MATH SOC, V112, P228
[6]   CALIBRATED GEOMETRIES [J].
HARVEY, R ;
LAWSON, HB .
ACTA MATHEMATICA, 1982, 148 :47-157
[7]  
Helgason S., 2001, DIFFERENTIAL GEOMETR, V34
[8]   ALGEBRAIC-GROUPS WITH A COMMUTING PAIR OF INVOLUTIONS AND SEMISIMPLE SYMMETRIC-SPACES [J].
HELMINCK, AG .
ADVANCES IN MATHEMATICS, 1988, 71 (01) :21-91
[9]   The geometry of symmetric triad and orbit spaces of Hermann actions [J].
Ikawa, Osamu .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2011, 63 (01) :79-136
[10]  
Kaneyuki S, 1996, TOPICS GEOMETRY, V20, P213