Analyzing circadian expression data by harmonic regression based on autoregressive spectral estimation

被引:141
作者
Yang, Rendong [1 ]
Su, Zhen [1 ]
机构
[1] China Agr Univ, Coll Biol Sci, State Key Lab Plant Physiol & Biochem, Div Bioinformat, Beijing 100193, Peoples R China
关键词
TIME-SERIES; GENE-EXPRESSION; SYSTEM;
D O I
10.1093/bioinformatics/btq189
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Circadian rhythms are prevalent in most organisms. Identification of circadian-regulated genes is a crucial step in discovering underlying pathways and processes that are clock-controlled. Such genes are largely detected by searching periodic patterns in microarray data. However, temporal gene expression profiles usually have a short time-series with low sampling frequency and high levels of noise. This makes circadian rhythmic analysis of temporal microarray data very challenging. Results: We propose an algorithm named ARSER, which combines time domain and frequency domain analysis for extracting and characterizing rhythmic expression profiles from temporal microarray data. ARSER employs autoregressive spectral estimation to predict an expression profile's periodicity from the frequency spectrum and then models the rhythmic patterns by using a harmonic regression model to fit the time-series. ARSER describes the rhythmic patterns by four parameters: period, phase, amplitude and mean level, and measures the multiple testing significance by false discovery rate q-value. When tested on well defined periodic and non-periodic short time-series data, ARSER was superior to two existing and widely-used methods, COSOPT and Fisher's G-test, during identification of sinusoidal and non-sinusoidal periodic patterns in short, noisy and non-stationary time-series. Finally, analysis of Arabidopsis microarray data using ARSER led to identification of a novel set of previously undetected non-sinusoidal periodic transcripts, which may lead to new insights into molecular mechanisms of circadian rhythms.
引用
收藏
页码:i168 / i174
页数:7
相关论文
共 35 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]   Assessing the accuracy of prediction algorithms for classification: an overview [J].
Baldi, P ;
Brunak, S ;
Chauvin, Y ;
Andersen, CAF ;
Nielsen, H .
BIOINFORMATICS, 2000, 16 (05) :412-424
[3]   Analyzing time series gene expression data [J].
Bar-Joseph, Z .
BIOINFORMATICS, 2004, 20 (16) :2493-2503
[4]   Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis [J].
Bläsing, OE ;
Gibon, Y ;
Günther, M ;
Höhne, M ;
Morcuende, R ;
Osuna, D ;
Thimm, O ;
Usadel, B ;
Scheible, WR ;
Stitt, M .
PLANT CELL, 2005, 17 (12) :3257-3281
[5]   Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana [J].
Brautigam, CA ;
Smith, BS ;
Ma, ZQ ;
Palnitkar, M ;
Tomchick, DR ;
Machius, M ;
Deisenhofer, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (33) :12142-12147
[6]   Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior [J].
Ceriani, MF ;
Hogenesch, JB ;
Yanovsky, M ;
Panda, S ;
Straume, M ;
Kay, SA .
JOURNAL OF NEUROSCIENCE, 2002, 22 (21) :9305-9319
[7]   Bayesian detection of non-sinusoidal periodic patterns in circadian expression data [J].
Chudova, Darya ;
Ihler, Alexander ;
Lin, Kevin K. ;
Andersen, Bogi ;
Smyth, Padhraic .
BIOINFORMATICS, 2009, 25 (23) :3114-3120
[8]   The Arabidopsis circadian clock incorporates a cADPR-based feedback loop [J].
Dodd, Antony N. ;
Gardner, Michael J. ;
Hotta, Carlos T. ;
Hubbard, Katharine E. ;
Dalchau, Neil ;
Love, John ;
Assie, Jean-Maurice ;
Robertson, Fiona C. ;
Jakobsen, Mia Kyed ;
Goncalves, Jorge ;
Sanders, Dale ;
Webb, Alex A. R. .
SCIENCE, 2007, 318 (5857) :1789-1792
[9]   DNA microarray analyses of circadian timing: The genomic basis of biological time [J].
Duffield, GE .
JOURNAL OF NEUROENDOCRINOLOGY, 2003, 15 (10) :991-1002
[10]   FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock [J].
Edwards, KD ;
Anderson, PE ;
Hall, A ;
Salathia, NS ;
Locke, JCW ;
Lynn, JR ;
Straume, M ;
Smith, JQ ;
Millar, AJ .
PLANT CELL, 2006, 18 (03) :639-650