FINITE ELEMENT APPROXIMATION OF THE LINEAR STOCHASTIC WAVE EQUATION WITH ADDITIVE NOISE

被引:63
作者
Kovacs, Mihaly [1 ]
Larsson, Stig [2 ,3 ]
Saedpanah, Fardin [2 ,3 ]
机构
[1] Univ Otago, Dept Math & Stat, Dunedin, New Zealand
[2] Chalmers, Dept Math Sci, SE-41296 Gothenburg, Sweden
[3] Univ Gothenburg, SE-41296 Gothenburg, Sweden
基金
瑞典研究理事会;
关键词
finite element method; stochastic wave equation; additive noise; Wiener process; stability; a priori error estimate; strong convergence; PARTIAL-DIFFERENTIAL-EQUATIONS; ORDER HYPERBOLIC EQUATIONS; CONVERGENCE; DRIVEN;
D O I
10.1137/090772241
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Semidiscrete finite element approximation of the linear stochastic wave equation (LSWE) with additive noise is studied in a semigroup framework. Optimal error estimates for the deterministic problem are obtained under minimal regularity assumptions. These are used to prove strong convergence estimates for the stochastic problem. The theory presented here applies to multidimensional domains and spatially correlated noise. Numerical examples illustrate the theory.
引用
收藏
页码:408 / 427
页数:20
相关论文
共 22 条
[1]  
Allen E. J., 1998, STOCH STOCH REP, V64, P117, DOI DOI 10.1080/17442509808834159
[2]  
ALLEN EJ, 2007, MATH MODEL THEORY AP, V22
[3]  
[Anonymous], 2007, Stochastic Partial Differential Equations
[4]   ERROR ESTIMATES FOR FINITE-ELEMENT METHODS FOR 2ND ORDER HYPERBOLIC EQUATIONS [J].
BAKER, GA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (04) :564-576
[5]  
Da Prato G, 1992, STOCHASTIC EQUATIONS
[6]   Numerical approximation of some linear stochastic partial differential equations driven by special additive noises [J].
Du, Q ;
Zhang, TY .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (04) :1421-1445
[7]   L2-ESTIMATES FOR GALERKIN METHODS FOR SECOND-ORDER HYPERBOLIC EQUATIONS [J].
DUPONT, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (05) :880-889
[8]   Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise [J].
Geissert, Matthias ;
Kovacs, Mihaly ;
Larsson, Stig .
BIT NUMERICAL MATHEMATICS, 2009, 49 (02) :343-356
[9]  
Gyöngy I, 2002, LECT NOTES PURE APPL, V227, P287
[10]  
KOVACS M, 2009, WEAK CONVERGENCE FIN, P37