Computing ideals of points

被引:44
作者
Abbott, J [1 ]
Bigatti, A
Kreuzer, M
Robbiano, L
机构
[1] Univ Genoa, Dept Math, Genoa, Italy
[2] Univ Regensburg, Dept Math, D-8400 Regensburg, Germany
关键词
D O I
10.1006/jsco.2000.0411
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We address the problem of computing ideals of polynomials which vanish at a finite set of points. In particular we develop a modular Buchberger-Moller algorithm, best suited for the computation over Q, and study its complexity; then we describe a variant for the computation of ideals of projective points, which uses a direct approach and a new stopping criterion. The described algorithms are implemented in CoCoA, and we report some experimental timings. (C) 2000 Academic Press.
引用
收藏
页码:341 / 356
页数:16
相关论文
共 15 条
[1]  
BUCHBERGER B, 1982, LECT NOTES COMPUTER, V144, P24
[2]  
Buchberger B., 1970, Aequationes math, V4, P374, DOI 10.1007/BF01844169
[3]  
Buchberger B., 1965, THESIS U INNSBRUCK
[4]  
Buchberger B., 1985, GROBNER BASES ALGORI, P184
[5]  
CAPANI A, 1998, COCA SYSTEM DOING CO
[6]  
CIOFFI F, 1998, RIC MAT, V47
[7]   Efficient rational number reconstruction [J].
Collins, GE ;
Encarnacion, MJ .
JOURNAL OF SYMBOLIC COMPUTATION, 1995, 20 (03) :287-297
[8]   CAYLEY-BACHARACH SCHEMES AND THEIR CANONICAL MODULES [J].
GERAMITA, AV ;
KREUZER, M ;
ROBBIANO, L .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 339 (01) :163-189
[9]  
LAKSHMAN YN, 1991, PROG MATH, V94, P227
[10]   GROBNER BASES OF IDEALS DEFINED BY FUNCTIONALS WITH AN APPLICATION TO IDEALS OF PROJECTIVE POINTS [J].
MARINARI, MG ;
MOLLER, HM ;
MORA, T .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1993, 4 (02) :103-145