An analytical approach to obtain exact solutions of some space-time conformable fractional differential equations

被引:24
作者
Kadkhoda, Nematollah [1 ]
Jafari, Hossein [2 ]
机构
[1] Bozorgmehr Univ Qaenat, Fac Basic Sci, Dept Math, Qaenat, Iran
[2] Univ South Africa, Dept Math Sci, Pretoria, South Africa
关键词
Space-time fractional Eckhaus equation; Sine-Gordon expansion method; Space-time fractional generalized reaction Duffing model; Conformable derivative;
D O I
10.1186/s13662-019-2349-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the sine-Gordon expansion method is used to obtain analytical solutions of the conformable space-time generalized reaction Duffing model and conformable space-time Eckhaus equation with the aid of symbolic computation. These equations can be reduced into ordinary differential equations (ODEs) using a suitable wave transformation with a predicted polynomial-type solution.
引用
收藏
页数:10
相关论文
共 29 条
[1]   Stationary wave solutions for new developed two-waves' fifth-order Korteweg-de Vries equation [J].
Ali, Mohammed ;
Alquran, Marwan ;
Jaradat, Imad ;
Baleanu, Dumitru .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
[2]  
[Anonymous], 2017, INT J ADV APPL MATH
[3]  
[Anonymous], 2019, MATHEMATICS BASEL, DOI DOI 10.3390/MATH7040364
[4]   Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal [J].
Atangana, Abdon ;
Baleanu, Dumitru ;
Alsaedi, Ahmed .
OPEN PHYSICS, 2016, 14 (01) :145-149
[5]   On a three step crisis integro-differential equation [J].
Baleanu, Dumitru ;
Ghafarnezhad, Khadijeh ;
Rezapour, Shahram .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
[6]   THE ECKHAUS PDE I-PSI-T+PSIXX+2(/PSI/2)XPSI+/PSI/4PSI=0 [J].
CALOGERO, F ;
DELILLO, S .
INVERSE PROBLEMS, 1987, 3 (04) :633-681
[7]   Analytical solution for the time-fractional telegraph equation by the method of separating variables [J].
Chen, J. ;
Liu, F. ;
Anh, V. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1364-1377
[8]   Solving Nonlinear Fractional Partial Differential Equations Using the Homotopy Analysis Method [J].
Dehghan, Mehdi ;
Manafian, Jalil ;
Saadatmandi, Abbas .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (02) :448-479
[9]   Adomian decomposition method for solving fractional nonlinear differential equations [J].
El-Wakil, S. A. ;
Elhanbaly, A. ;
Abdou, M. A. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (01) :313-324
[10]  
He J.-H., 2010, Nonlinear Sci. Lett. A, V1, P1