Diagonal scaling of stiffness matrices in the Galerkin boundary element method

被引:6
|
作者
Ainsworth, M
McLean, B
Tran, T
机构
[1] Univ Strathclyde, Dept Math, Glasgow G1 1XH, Lanark, Scotland
[2] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
[3] Australian Natl Univ, Sch Math Sci, Ctr Math & Applicat, Canberra, ACT 0200, Australia
来源
ANZIAM JOURNAL | 2000年 / 42卷
关键词
D O I
10.1017/S1446181100011676
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A boundary integral equation of the first kind is discretised using Galerkin's method with piecewise-constant trial functions. We show how the condition number of the stiffness matrix depends on the number of degrees of freedom and on the global mesh ratio. We also show that diagonal scaling eliminates the latter dependence. Numerical experiments confirm the theory, and demonstrate that in practical computations involving strong local mesh refinement, diagonal scaling dramatically improves the conditioning of the Galerkin equations.
引用
收藏
页码:141 / 150
页数:10
相关论文
共 50 条