Carbon-efficient carbon dioxide electrolysers

被引:199
作者
Ozden, Adnan [1 ]
Garcia de Arquer, F. Pelayo [2 ,3 ]
Huang, Jianan Erick [3 ]
Wicks, Joshua [3 ]
Sisler, Jared [3 ]
Miao, Rui Kai [1 ]
O'Brien, Colin P. [1 ]
Lee, Geonhui [3 ]
Wang, Xue [3 ]
Ip, Alexander H. [3 ]
Sargent, Edward H. [3 ]
Sinton, David [1 ]
机构
[1] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON, Canada
[2] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Fotan, Barcelona, Spain
[3] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
ELECTROCHEMICAL CO2 CONVERSION; TECHNOECONOMIC ANALYSIS; LIQUID FUEL; ELECTROREDUCTION; REDUCTION; CAPTURE; GAS; MONOXIDE; MEMBRANE; ETHYLENE;
D O I
10.1038/s41893-022-00879-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Renewable electricity-powered CO2 electroreduction offers a sustainable route to transform the chemical industry. Here the authors overview four CO2 electrolysis pathways that could be immune from carbonate formation, a major technological barrier. The electroreduction of CO2 (CO2R) is the conversion of CO2 to renewable fuels and feedstocks, a promising technology that could support the transition from fossil to renewable sources in the chemical industry. Today the viability of CO2R technology is limited by carbonate formation via the reaction of reactant CO2 with hydroxides and the energy cost incurred to regenerate the reactant. In this Review, we analyse the literature on four emerging high single pass CO2 conversion approaches: CO2 regeneration from carbonate, CO2R in acidic media, cascade CO2R-COR and CO2R direct from a capture liquid. We analyse each system, describe the challenges associated with each pathway and outline future research directions towards the goal of ensuring that CO2R is viable and thus scalable.
引用
收藏
页码:563 / 573
页数:11
相关论文
共 96 条
[1]  
Aeshala L. M., 2013, J CO 2 UTIL, V34
[2]   Downstream of the CO2 Electrolyzer: Assessing the Energy Intensity of Product Separation [J].
Alerte, Theo ;
Edwards, Jonathan P. ;
Gabardo, Christine M. ;
O'Brien, Colin P. ;
Gaona, Adriana ;
Wicks, Joshua ;
Obradovi, Ana ;
Sarkar, Amitava ;
Jaffer, Shaffiq A. ;
MacLean, Heather L. ;
Sinton, David ;
Sargent, Edward H. .
ACS ENERGY LETTERS, 2021, 6 (12) :4405-4412
[3]  
[Anonymous], 2018, The Future of Petrochemicals: Toward a More Sustainable Chemical Industry
[4]  
[Anonymous], 2018, AN FOR 2023
[5]  
[Anonymous], 2003, FUELS HIGH LOW CAL V
[6]   Gas conditioning -: The interface between CO2 capture and transport [J].
Aspelund, Audun ;
Jordal, Kristin .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2007, 1 (03) :343-354
[7]   Suppression of Hydrogen Evolution in Acidic Electrolytes by Electrochemical CO2 Reduction [J].
Bondue, Christoph J. ;
Graf, Matthias ;
Goyal, Akansha ;
Koper, Marc T. M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (01) :279-285
[8]  
Boulamanti A., 2017, ENERGY EFFICIENCY GH, DOI DOI 10.2760/20486
[9]   Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80 °C [J].
Chatti, Manjunath ;
Gardiner, James L. ;
Fournier, Maxime ;
Johannessen, Bernt ;
Williams, Tim ;
Gengenbach, Thomas R. ;
Pai, Narendra ;
Cuong Nguyen ;
MacFarlane, Douglas R. ;
Hocking, Rosalie K. ;
Simonov, Alexandr N. .
NATURE CATALYSIS, 2019, 2 (05) :457-465
[10]   Electrochemical Reduction of Carbon Dioxide in a Monoethanolamine Capture Medium [J].
Chen, Lu ;
Li, Fengwang ;
Zhang, Ying ;
Bentley, Cameron L. ;
Horne, Mike ;
Bond, Alan M. ;
Zhang, Jie .
CHEMSUSCHEM, 2017, 10 (20) :4109-4118