Classification of patterns of benignity and malignancy based on CT using topology-based phylogenetic diversity index and convolutional neural network

被引:42
作者
de Carvalho Filho, Antonio Oseas [1 ]
Silva, Aristofanes Correa [2 ]
de Paiva, Anselmo Cardoso [2 ]
Nunes, Rodolfo Acatauassu [3 ]
Gattass, Marcelo [4 ]
机构
[1] Univ Fed Piaui, Rua Cicero Duarte SN,Campus Picos, BR-64600000 Picos, PI, Brazil
[2] Univ Fed Maranhao, Av Portugueses SN,Campus Bacanga, BR-65085580 Sao Luis, MA, Brazil
[3] Univ Estado Rio De Janeiro, Sao Francisco de Xavier 524, BR-20550900 Rio De Janeiro, RJ, Brazil
[4] Pontifical Catholic Univ Rio de Janeiro, R Sao Vicente 225, BR-22453900 Rio De Janeiro, RJ, Brazil
关键词
Lung cancer; Phylogenetic diversity index; Convolutional neural network; COMPUTER-AIDED DIAGNOSIS; LUNG NODULES; TAXONOMIC DISTINCTNESS; PULMONARY NODULES; CONSERVATION; TOMOGRAPHY; CANCER; IMAGE; MASS;
D O I
10.1016/j.patcog.2018.03.032
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lung cancer has been recognized as the primary global cause of death among cancer patients. This work is intended to develop a methodology for diagnosis of lung nodules using images from the Lung Image Database Consortium and Image Database Resource Initiative. The proposed method uses image processing and pattern recognition techniques. To differentiate the patterns of malignant and benign forms, we used index basic taxic weights and standardized taxic weights. Finally, we applied a convolutional neural network for classification. In the test stage, we applied the proposed methodology to 50,580 (14,184 malignant and 36,396 benign) nodules from the image database. The proposed method presents promising results for the diagnosis of malignancy and benignity, achieving an accuracy of 92.63%, sensitivity of 90.7%, specificity of 93.47%, and receiver operating characteristic curve of 0.934. These results are promising and demonstrate a real rate of correct detections using the texture features. Because precocious detection allows faster therapeutic intervention, and thus a more favorable prognosis for the patient, we propose herein a methodology that contributes to the field in this aspect. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:200 / 212
页数:13
相关论文
共 68 条
[1]  
[Anonymous], CoRR
[2]  
[Anonymous], 2014, International Journal of Com
[3]  
[Anonymous], SPIE MED IMAGING
[4]  
[Anonymous], 2014, WORLD CANC REPORT 20
[5]  
[Anonymous], MULTIMEDIA TOOLS APP
[6]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[7]  
Barros Nascimento Leonardo, 2012, Machine Learning and Data Mining in Pattern Recognition. Proceedings 8th International Conference, MLDM 2012, P454, DOI 10.1007/978-3-642-31537-4_36
[8]   Automatic segmentation of lung nodules with growing neural gas and support vector machine [J].
Barros Netto, Stelmo Magalhaes ;
Silva, Aristofanes Correa ;
Nunes, Rodolfo Acatauassu ;
Gattass, Marcelo .
COMPUTERS IN BIOLOGY AND MEDICINE, 2012, 42 (11) :1110-1121
[9]   A multi-kernel based framework for heterogeneous feature selection and over-sampling for computer-aided detection of pulmonary nodules [J].
Cao, Peng ;
Liu, Xiaoli ;
Yang, Jinzhu ;
Zhao, Dazhe ;
Li, Wei ;
Huang, Min ;
Zaiane, Osmar .
PATTERN RECOGNITION, 2017, 64 :327-346
[10]   NF-kappaB in lung cancer, a carcinogenesis mediator and a prevention and therapy target [J].
Chen, Wenshu ;
Li, Zi ;
Bai, Lang ;
Lin, Yong .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2011, 16 :1172-1185