Corrosion behavior of 316L austenitic steel processed by selective laser melting, hot-isostatic pressing, and casting

被引:98
|
作者
Geenen, K. [1 ]
Roettger, A. [1 ]
Theisen, W. [1 ]
机构
[1] Ruhr Univ Bochum, Inst Mat, Chair Mat Technol, Univ Str 150, D-44801 Bochum, Germany
来源
MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION | 2017年 / 68卷 / 07期
关键词
additive manufacturing; austenitic steel; corrosion resistance; hot-isostatic pressing; selective laser melting; STAINLESS-STEEL; MECHANICAL-PROPERTIES; POWDER; PARTS; MICROSTRUCTURE; 304L;
D O I
10.1002/maco.201609210
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study investigated the corrosion behavior of grade 316L austenitic steel processed by casting, hot isostatic pressing (HIP), selective laser melting (SLM), and SLM+HIP. Electrochemical results showed that the SLM-densified specimen exhibited poorer corrosion resistance than specimens processed by casting and hot isostatic pressing in solution-annealed condition. Microstructural investigations revealed that the SLM-densified specimen had a fine-grained microstructure but comparatively higher porosity, which negatively influenced corrosion resistance. Additional HIP treatment further worsened corrosion resistance. The HIP process does not significantly reduce porosity compared to the SLM process, which can be attributed to the argon atmosphere used when manufacturing the SLM samples. Nevertheless, it was possible to reduce the crack density via HIP treatment and the formerly lamellar oxides underwent spheroidization.
引用
收藏
页码:764 / 775
页数:12
相关论文
共 50 条
  • [21] Selective laser melting of TiB2/316L stainless steel composites: The roles of powder preparation and hot isostatic pressing post-treatment
    AlMangour, Bandar
    Grzesiak, Dariusz
    Yang, Jenn-Ming
    POWDER TECHNOLOGY, 2017, 309 : 37 - 48
  • [22] Microstructure and Mechanical Properties of 316L Stainless Steel in the Selective Laser Melting
    He Ketai
    Zhou Liu
    Yang Lechang
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (09)
  • [23] Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel
    Liverani, E.
    Toschi, S.
    Ceschini, L.
    Fortunato, A.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2017, 249 : 255 - 263
  • [24] Mechanical behavior of selective laser melted 316L stainless steel
    Suryawanshi, Jyoti
    Prashanth, K. G.
    Ramamurty, U.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 696 : 113 - 121
  • [25] Porosity control in 316L stainless steel using cold and hot isostatic pressing
    Essa, Khamis
    Jamshidi, Parastoo
    Zou, Ji
    Attallah, Moataz M.
    Hassanin, Hany
    MATERIALS & DESIGN, 2018, 138 : 21 - 29
  • [26] Surface treatment and corrosion behavior of 316L stainless steel fabricated by selective laser melting
    Lv, Shasha
    Tao, Huimin
    Hong, Yuanjian
    Zheng, Yuanyuan
    Zhou, Chengshuang
    Zheng, Jinyang
    Zhang, Lin
    MATERIALS RESEARCH EXPRESS, 2019, 6 (10):
  • [27] Effect of the Particle Size of 316L Stainless Steel on the Corrosion Characteristics of the Steel Fabricated by Selective Laser Melting
    Chen, Wei
    Yin, Guangfu
    Huang, Zhongbing
    Feng, Zai
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (11): : 10217 - 10232
  • [28] Influence of laser processing parameters on the surface characteristics of 316L stainless steel manufactured by selective laser melting
    Dursun, Gokhan
    Ibekwe, Samuel
    Li, Guoqiang
    Mensah, Patrick
    Joshi, Ghanashyam
    Jerro, Dwayne
    MATERIALS TODAY-PROCEEDINGS, 2020, 26 : 387 - 393
  • [29] On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting
    Riemer, A.
    Leuders, S.
    Thoene, M.
    Richard, H. A.
    Troester, T.
    Niendorf, T.
    ENGINEERING FRACTURE MECHANICS, 2014, 120 : 15 - 25
  • [30] Impact of Selective Laser Melting Additive Manufacturing on the High Temperature Behavior of AISI 316L Austenitic Stainless Steel
    Siri, Corentin
    Popa, Ioana
    Vion, Alexis
    Langlade, Cecile
    Chevalier, Sebastien
    OXIDATION OF METALS, 2020, 94 (5-6): : 527 - 548