Triple product identity, quintuple product identity and Ramanujan's differential equations for the classical Eisenstein series

被引:8
作者
Chan, Heng Huat [1 ]
机构
[1] Natl Univ Singapore, Dept Math, 2 Sci Dr 2, Singapore 117543, Singapore
关键词
D O I
10.1090/S0002-9939-07-08723-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we use the triple product identity and the quintuple product identity to derive Ramanujan's famous differential equations for the Eisenstein series.
引用
收藏
页码:1987 / 1992
页数:6
相关论文
共 14 条
[1]  
Andrews GE., 1999, SPECIAL FUNCTIONS, V71
[2]  
Berndt B. C., 1991, Ramanujan's Notebooks
[3]   A new identity for (q; q)∞10 with an application to Ramanujan's partition congruence modulo 11 [J].
Berndt, BC ;
Chan, SH ;
Liu, ZG ;
Yesilyurt, H .
QUARTERLY JOURNAL OF MATHEMATICS, 2004, 55 :13-30
[4]   A page on Eisenstein series in Ramanujan's lost notebook [J].
Berndt, BC ;
Yee, AJ .
GLASGOW MATHEMATICAL JOURNAL, 2003, 45 :123-129
[5]   SIMPLE PROOF OF QUINTUPLE PRODUCT IDENTITY [J].
CARLITZ, L ;
SUBBARAO, MV .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 32 (01) :42-&
[6]   The quintuple product identity [J].
Cooper, Shaun .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2006, 2 (01) :115-161
[7]  
Huard JG, 2002, NUMBER THEORY FOR THE MILLENNIUM II, P229
[8]  
Lang S., 1995, Introduction to Modular Forms
[9]   A three-term theta function identity and its applications [J].
Liu, ZG .
ADVANCES IN MATHEMATICS, 2005, 195 (01) :1-23
[10]  
Ramanujan S., 1916, Trans. Camb. Phil. Soc, V22, P159