Fabrication of ZrC/ZrO2 composite continuous fibers with a radial gradient using pack carburizing

被引:4
作者
Wang, Lin [1 ,2 ]
Xie, Yongshuai [1 ,2 ]
Ma, Dehua [1 ,2 ]
Zhu, Luyi [1 ,2 ]
Wang, Xinqiang [1 ,2 ]
Jin, Xiaotong [1 ,2 ]
Xu, Chonghe [1 ,2 ]
Peng, Ying [1 ,2 ]
Zhang, Guanghui [1 ,2 ]
Xu, Dong [1 ,2 ]
机构
[1] Shandong Univ, State Key Lab Crystal Mat, Jinan 25010, Shandong, Peoples R China
[2] Shandong Univ, Inst Crystal Mat, Jinan 25010, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Fine grain strengthening; Continuous fiber; ZrC/ZrO2; composite; Carburizing; Mechanical properties; MECHANICAL-PROPERTIES; THERMAL-CONDUCTIVITY; MICROSTRUCTURE; NANOFIBERS; CERAMICS; DENSE;
D O I
10.1016/j.ceramint.2019.07.351
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
As a polycrystalline fiber, continuous zirconia (ZrO2) fiber used at high temperatures will cause grain coarsening and strength degradation due to grain growth. In order to suppress the grain coarsening, zirconium carbide (ZrC) and carbon were introduced into ZrO2 continuous fibers by pack carburizing, and ZrC/ZrO2 composite fibers with a radial gradient were subsequently prepared. Due to the pinning effect of ZrC or carbon on the grain boundary, the movement of the grain boundary is limited. The composite fibers obtained in an argon atmosphere at 1400 degrees C exhibited fine grain, compact micromorphology, and a tensile strength of 784 MPa. The formation process of the composite fiber was accomplished by the interaction of external graphite carbon and internal residual carbon with ZrO2. This work provides a simple and economical method for preparing carbide composite fibers.
引用
收藏
页码:23037 / 23042
页数:6
相关论文
共 28 条
  • [1] Joining and testing of alumina fibre reinforced YAG-ZrO2 matrix composites
    Akram, Muhammad Yasir
    Ferraris, Monica
    Casalegno, Valentina
    Salvo, Milena
    Puchas, Georg
    Knohl, Stefan
    Krenkel, Walter
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (04) : 1802 - 1811
  • [2] Sintering dense nanocrystalline ceramics without final-stage grain growth
    Chen, IW
    Wang, XH
    [J]. NATURE, 2000, 404 (6774) : 168 - 171
  • [3] Synthesis of nanosized zirconium carbide by laser pyrolysis route
    Combemale, L.
    Leconte, Y.
    Portier, X.
    Herlin-Boime, N.
    Reynaud, C.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 483 (1-2) : 468 - 472
  • [4] The Fabrication of ZrO2-ZrC Microspheres by Internal Gelation and Carbothermal Reduction Process
    Gao, Yong
    Ma, Jingtao
    Zhao, Xingyu
    Hao, Shaochang
    Deng, Changsheng
    Liu, Bing
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2016, 99 (04) : 1184 - 1191
  • [5] Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs
    Han, Minfang
    Tang, Xiuling
    Yin, Huiyan
    Peng, Suping
    [J]. JOURNAL OF POWER SOURCES, 2007, 165 (02) : 757 - 763
  • [6] Transformation toughening in zirconia-containing ceramics
    Hannink, RHJ
    Kelly, PM
    Muddle, BC
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2000, 83 (03) : 461 - 487
  • [7] Grain-size dependence of sliding wear in tetragonal zirconia polycrystals
    He, YJ
    Winnubst, L
    Burggraaf, AJ
    Verweij, H
    vanderVarst, PGT
    deWith, B
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1996, 79 (12) : 3090 - 3096
  • [8] Fabrication and mechanical properties of short ZrO2 fiber reinforced NiFe2O4 matrix composites
    Hua, Zhongsheng
    Yao, Guangchun
    Ma, Junfei
    Zhang, Meiling
    [J]. CERAMICS INTERNATIONAL, 2013, 39 (04) : 3699 - 3708
  • [9] Hyeong U.J., 2008, J ALLOY COMPD, V465, P265
  • [10] MELTING POINT OF PURE ZIRCONIA
    LATTA, RE
    DUDERSTA.EC
    FRYXELL, RE
    [J]. JOURNAL OF NUCLEAR MATERIALS, 1970, 35 (03) : 345 - &