Adaptive identification of hysteresis and creep in piezoelectric stack actuators

被引:15
作者
Minase, J. [1 ]
Lu, T. -F. [1 ]
Cazzolato, B. [1 ]
Grainger, S. [1 ]
机构
[1] Univ Adelaide, Sch Mech Engn, Adelaide, SA 5005, Australia
关键词
Piezoelectric stack actuator; Hysteresis; Creep; Unscented Kalman Filter; Model identification; NONLINEAR BEHAVIOR;
D O I
10.1007/s00170-009-2033-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The adaptive identification of the non-linear hysteresis and creep effects in a piezoelectric actuator is proposed in this paper. Model uncertainties related to the hysteresis and creep effects, most prominently in the high frequency zone (to 100 Hz), large operating amplitude and/long operating time, can make a piezoelectric actuator-driven micro-positioning system unstable in the closed loop. Furthermore, these uncertainties may lead to inaccurate open-loop control and frequently cause harmonic distortion when a piezoelectric actuator is driven with a sinusoidal input voltage signal. In order to solve the above issues, it is important to determine an accurate non-linear dynamic model of a piezoelectric actuator. An unscented Kalman filter-based adaptive identification algorithm is presented, which accurately determines the non-linear dynamics of a piezoelectric stack type actuator such that the non-linear hysteresis and creep effects can be accurately predicted. Since hysteresis and creep are dominant in open loop, the actuator is driven in an open-loop mode in this investigation.
引用
收藏
页码:913 / 921
页数:9
相关论文
共 50 条
  • [41] A Frequency-Dependent Hysteresis Model for Piezoelectric Actuators
    Zareinejad, M.
    Rezaei, S. M.
    Motamedi, M.
    Habibollahi, H.
    [J]. ACTUATOR 08, CONFERENCE PROCEEDINGS, 2008, : 527 - 530
  • [42] Modeling hysteresis in piezoelectric actuators using NARMAX models
    Deng, Liang
    Tan, Yonghong
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2009, 149 (01) : 106 - 112
  • [43] Tracking control of piezoelectric actuators by feedforward hysteresis compensation
    Ru, Changhai
    Pang, Bohui
    Wang, Kejun
    Ye, Xiufen
    [J]. IEEE ICMA 2006: PROCEEDING OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2006, : 2116 - +
  • [44] Linearization of Stack Piezoelectric Ceramic Actuators Based on Bouc-Wen Model
    Wang, D. H.
    Zhu, W.
    Yang, Q.
    [J]. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2011, 22 (05) : 401 - 413
  • [45] Hysteresis Modeling of Piezoelectric Actuators Using the Fuzzy System
    Li, Pengzhi
    Gu, Guoying
    Lai, Leijie
    Zhu, Limin
    [J]. INTELLIGENT ROBOTICS AND APPLICATIONS, PT I, 2010, 6424 : 114 - 124
  • [46] Review on the Nonlinear Modeling of Hysteresis in Piezoelectric Ceramic Actuators
    Dai, Yingli
    Li, Dequan
    Wang, Dong
    [J]. ACTUATORS, 2023, 12 (12)
  • [47] Modeling and Control with Hysteresis of Piezoelectric Smart Materials Actuators
    Liu, Yanmei
    Chen, Zhen
    Zhuang, Xuezheng
    Liu, Zhaohui
    [J]. ADVANCED DESIGN AND MANUFACTURING TECHNOLOGY III, PTS 1-4, 2013, 397-400 : 1426 - +
  • [48] MIMOMH feed-forward adaptive vibration control of helicopter fuselage by using piezoelectric stack actuators
    Meng, De
    Xia, Pinqi
    Song, Laishou
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (23) : 5534 - 5545
  • [49] Hysteresis compensation of piezoelectric actuators: The modified Rayleigh model
    Park, Jongkyu
    Moon, Wonkyu
    [J]. ULTRASONICS, 2010, 50 (03) : 335 - 339
  • [50] Modeling of hysteresis in piezoelectric actuators using neural networks
    Zhang, Xinliang
    Tan, Yonghong
    Su, Miyong
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2009, 23 (08) : 2699 - 2711